[1] Grzegorz Bancerek. König’s theorem. *Formalized Mathematics*, 1(**3**):589–593, 1990.Google Scholar

[2] Grzegorz Bancerek. Tarski’s classes and ranks. *Formalized Mathematics*, 1(**3**):563–567, 1990.Google Scholar

[3] Grzegorz Bancerek. Continuous, stable, and linear maps of coherence spaces. *Formalized Mathematics*, 5(**3**):381–393, 1996.Google Scholar

[4] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(**1**):41–46, 1990.Google Scholar

[5] Grzegorz Bancerek. The ordinal numbers. *Formalized Mathematics*, 1(**1**):91–96, 1990.Google Scholar

[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(**1**):107–114, 1990.Google Scholar

[7] Józef Białas. The σ-additive measure theory. *Formalized Mathematics*, 2(**2**):263–270, 1991.Google Scholar

[8] Józef Białas. Properties of the intervals of real numbers. *Formalized Mathematics*, 3(**2**): 263–269, 1992.Google Scholar

[9] Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. *Measure theory*, volume 1. Springer, 2007.Google Scholar

[10] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(**1**): 55–65, 1990.Google Scholar

[11] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(**1**):153–164, 1990.Google Scholar

[12] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(**1**):47–53, 1990.Google Scholar

[13] Roland Coghetto. Semiring of sets. *Formalized Mathematics*, 22(**1**):79–84, 2014. doi:10.2478/forma-2014-0008.CrossrefGoogle Scholar

[14] Agata Darmochwał. Finite sets. *Formalized Mathematics*, 1(**1**):165–167, 1990.Google Scholar

[15] D.F. Goguadze. About the notion of semiring of sets. *Mathematical Notes*, 74:346–351, 2003. ISSN 0001-4346. doi:10.1023/A:1026102701631.CrossrefGoogle Scholar

[16] P. R. Halmos. *Measure Theory*. Springer-Verlag, 1974.Google Scholar

[17] Jarosław Kotowicz and Konrad Raczkowski. Coherent space. *Formalized Mathematics*, 3 (**2**):255–261, 1992.Google Scholar

[18] Andrzej Nędzusiak. σ-fields and probability. *Formalized Mathematics*, 1(**2**):401–407, 1990.Google Scholar

[19] Andrzej Nędzusiak. Probability. *Formalized Mathematics*, 1(**4**):745–749, 1990.Google Scholar

[20] Beata Padlewska. Families of sets. *Formalized Mathematics*, 1(**1**):147–152, 1990.Google Scholar

[21] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. *Formalized Mathematics*, 1(**3**):441–444, 1990.Google Scholar

[22] Andrzej Trybulec. On the sets inhabited by numbers. *Formalized Mathematics*, 11(**4**): 341–347, 2003.Google Scholar

[23] Andrzej Trybulec and Agata Darmochwał. Boolean domains. *Formalized Mathematics*, 1 (**1**):187–190, 1990.Google Scholar

[24] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. *Formalized Mathematics*, 1(**3**):569–573, 1990.Google Scholar

[25] Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(**1**):67–71, 1990.Google Scholar

[26] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1 (**1**):73–83, 1990.Google Scholar

[27] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(**1**):181–186, 1990.Google Scholar

## Comments (0)