[1] Jonathan Backer, Piotr Rudnicki, and Christoph Schwarzweller. Ring ideals. *Formalized Mathematics*, 9(**3**):565–582, 2001.

[2] Grzegorz Bancerek. Cardinal numbers. *Formalized Mathematics*, 1(**2**):377–382, 1990.

[3] Grzegorz Bancerek. Cardinal arithmetics. *Formalized Mathematics*, 1(**3**):543–547, 1990.

[4] Grzegorz Bancerek. König’s theorem. *Formalized Mathematics*, 1(**3**):589–593, 1990.

[5] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(**1**):41–46, 1990.

[6] Grzegorz Bancerek. The ordinal numbers. *Formalized Mathematics*, 1(**1**):91–96, 1990.

[7] Nicolas Bourbaki. Topological vector spaces: Chapters 1-5. *Springer*, 1981.

[8] Czesław Byliński. The complex numbers. *Formalized Mathematics*, 1(**3**):507–513, 1990.

[9] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(**1**): 55–65, 1990.

[10] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(**1**):153–164, 1990.

[11] Czesław Byliński. Partial functions. *Formalized Mathematics*, 1(**2**):357–367, 1990.

[12] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(**1**):47–53, 1990.

[13] Agata Darmochwał. Finite sets. *Formalized Mathematics*, 1(**1**):165–167, 1990.

[14] N. J. Dunford and T. Schwartz. *Linear operators I*. Interscience Publ., 1958.

[15] Noboru Endou, Yasunari Shidama, and Katsumasa Okamura. Baire’s category theorem and some spaces generated from real normed space. *Formalized Mathematics*, 14(**4**): 213–219, 2006. doi:10.2478/v10037-006-0024-x. [Crossref]

[16] Andrey Kolmogorov and Sergei Fomin. *Elements of the Theory of Functions and Functional Analysis [Two Volumes in One]*. Martino Fine Books, 2012.

[17] Andrzej Kondracki. Basic properties of rational numbers. *Formalized Mathematics*, 1(**5**): 841–845, 1990.

[18] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(**2**):335–342, 1990.

[19] Kazuhisa Nakasho, Yuichi Futa, and Yasunari Shidama. Topological properties of real normed space. *Formalized Mathematics*, 22(**3**):209–223, 2014. doi:10.2478/forma-2014-0024. [Crossref]

[20] Keiko Narita, Noboru Endou, and Yasunari Shidama. Dual spaces and Hahn-Banach theorem. *Formalized Mathematics*, 22(**1**):69–77, 2014. doi:10.2478/forma-2014-0007. [Crossref]

[21] Keiko Narita, Noboru Endou, and Yasunari Shidama. Bidual spaces and reflexivity of real normed spaces. *Formalized Mathematics*, 22(**4**):303–311, 2014. doi:10.2478/forma-2014-0030. [Crossref]

[22] Bogdan Nowak and Andrzej Trybulec. Hahn-Banach theorem. *Formalized Mathematics*, 4(**1**):29–34, 1993.

[23] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Formalized Mathematics*, 1(**1**):223–230, 1990.

[24] Jan Popiołek. Real normed space. *Formalized Mathematics*, 2(**1**):111–115, 1991.

[25] Yasunari Shidama. Banach space of bounded linear operators. *Formalized Mathematics*, 12(**1**):39–48, 2004.

[26] Andrzej Trybulec. Domains and their Cartesian products. *Formalized Mathematics*, 1(**1**): 115–122, 1990.

[27] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. *Formalized Mathematics*, 1(**2**):297–301, 1990.

[28] Wojciech A. Trybulec. Vectors in real linear space. *Formalized Mathematics*, 1(**2**):291–296, 1990.

[29] Wojciech A. Trybulec. Linear combinations in real linear space. *Formalized Mathematics*, 1(**3**):581–588, 1990.

[30] Wojciech A. Trybulec. Basis of real linear space. *Formalized Mathematics*, 1(**5**):847–850, 1990.

[31] Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(**1**):67–71, 1990.

[32] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(**1**):73–83, 1990.

[33] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(**1**):181–186, 1990.

[34] Kosaku Yoshida. *Functional Analysis*. Springer, 1980.

## Comments (0)