[1] Grzegorz Bancerek. König’s theorem. *Formalized Mathematics*, 1(**3**):589–593, 1990.Google Scholar

[2] Grzegorz Bancerek. Tarski’s classes and ranks. *Formalized Mathematics*, 1(**3**):563–567, 1990.Google Scholar

[3] Grzegorz Bancerek. Monoids. *Formalized Mathematics*, 3(**2**):213–225, 1992.Google Scholar

[4] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(**1**):41–46, 1990.Google Scholar

[5] Grzegorz Bancerek. The ordinal numbers. *Formalized Mathematics*, 1(**1**):91–96, 1990.Google Scholar

[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(**1**):107–114, 1990.Google Scholar

[7] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. *Formalized Mathematics*, 5(**4**):485–492, 1996.Google Scholar

[8] Nicolas Bourbaki. *Elements of Mathematics. Algebra I. Chapters 1-3*. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1989.Google Scholar

[9] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(**1**): 55–65, 1990.Google Scholar

[10] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(**1**):153–164, 1990.Google Scholar

[11] Czesław Byliński. Partial functions. *Formalized Mathematics*, 1(**2**):357–367, 1990.Google Scholar

[12] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(**1**):47–53, 1990.Google Scholar

[13] Artur Korniłowicz. The product of the families of the groups. *Formalized Mathematics*, 7(**1**):127–134, 1998.Google Scholar

[14] Serge Lang. *Algebra*. Springer, 3rd edition, 2005.Google Scholar

[15] Beata Madras. Product of family of universal algebras. *Formalized Mathematics*, 4(**1**): 103–108, 1993.Google Scholar

[16] Kazuhisa Nakasho, Hiroshi Yamazaki, Hiroyuki Okazaki, and Yasunari Shidama. Definition and properties of direct sum decomposition of groups. *Formalized Mathematics*, 23 (**1**):15–27, 2015. doi:10.2478/forma-2015-0002.CrossrefGoogle Scholar

[17] Hiroyuki Okazaki, Kenichi Arai, and Yasunari Shidama. Normal subgroup of product of groups. *Formalized Mathematics*, 19(**1**):23–26, 2011. doi:10.2478/v10037-011-0004-7.CrossrefGoogle Scholar

[18] D. Robinson. *A Course in the Theory of Groups*. Springer New York, 2012.Google Scholar

[19] J.J. Rotman. An Introduction to the Theory of Groups. Springer, 1995.Google Scholar

[20] Andrzej Trybulec. Domains and their Cartesian products. *Formalized Mathematics*, 1(**1**): 115–122, 1990.Google Scholar

[21] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. *Formalized Mathematics*, 1(**3**):569–573, 1990.Google Scholar

[22] Wojciech A. Trybulec. Groups. *Formalized Mathematics*, 1(**5**):821–827, 1990.Google Scholar

[23] Wojciech A. Trybulec. Subgroup and cosets of subgroups. *Formalized Mathematics*, 1(**5**): 855–864, 1990.Google Scholar

[24] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. *Formalized Mathematics*, 1(**5**):955–962, 1990.Google Scholar

[25] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. *Formalized Mathematics*, 2(**1**):41–47, 1991.Google Scholar

[26] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. *Formalized Mathematics*, 2(**4**):573–578, 1991.Google Scholar

[27] Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(**1**):67–71, 1990.Google Scholar

[28] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1 (**1**):73–83, 1990.Google Scholar

[29] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(**1**):181–186, 1990.Google Scholar

## Comments (0)