Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 23, Issue 2 (Jun 2015)

Issues

Euler’s Partition Theorem

Karol Pąk
Published Online: 2015-08-13 | DOI: https://doi.org/10.1515/forma-2015-0009

Abstract

In this article we prove the Euler’s Partition Theorem which states that the number of integer partitions with odd parts equals the number of partitions with distinct parts. The formalization follows H.S. Wilf’s lecture notes [28] (see also [1]).

Euler’s Partition Theorem is listed as item #45 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/ [27].

MSC: 05A17; 03B35

Keywords: partition theorem

MML: identifier: EULRPART; version: 8.1.045.32.1237

References

  • [1] George E. Andrews and Kimmo Eriksson. Integer Partitions. ISBN 9780521600903.Google Scholar

  • [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Google Scholar

  • [3] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589-593, 1990.Google Scholar

  • [4] Grzegorz Bancerek. Countable sets and Hessenberg’s theorem. Formalized Mathematics, 2(1):65-69, 1991.Google Scholar

  • [5] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Google Scholar

  • [6] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [7] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Google Scholar

  • [8] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.Google Scholar

  • [9] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.Google Scholar

  • [10] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Google Scholar

  • [11] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Google Scholar

  • [12] Czesław Bylinski. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.Google Scholar

  • [13] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [14] Marco B. Caminati. Preliminaries to classical first order model theory. Formalized Mathematics, 19(3):155-167, 2011. doi:10.2478/v10037-011-0025-2.CrossrefGoogle Scholar

  • [15] Marco B. Caminati. First order languages: Further syntax and semantics. Formalized Mathematics, 19(3):179-192, 2011. doi:10.2478/v10037-011-0027-0.CrossrefGoogle Scholar

  • [16] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Google Scholar

  • [17] Magdalena Jastrzȩbska and Adam Grabowski. Some properties of Fibonacci numbers. Formalized Mathematics, 12(3):307-313, 2004.Google Scholar

  • [18] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.Google Scholar

  • [19] Karol Pak. Flexary operations. Formalized Mathematics, 23(2):81-92, 2015. doi:10.1515 /forma-2015-0008.CrossrefGoogle Scholar

  • [20] Karol Pak. The Nagata-Smirnov theorem. Part II. Formalized Mathematics, 12(3):385-389, 2004.Google Scholar

  • [21] Karol Pak. Stirling numbers of the second kind. Formalized Mathematics, 13(2):337-345, 2005.Google Scholar

  • [22] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.Google Scholar

  • [23] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990.Google Scholar

  • [24] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Google Scholar

  • [25] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.Google Scholar

  • [26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [27] Freek Wiedijk. Formalizing 100 theorems.Google Scholar

  • [28] Herbert S. Wilf. Lectures on integer partitions.Google Scholar

  • [29] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.Google Scholar

  • [30] Bo Zhang and Yatsuka Nakamura. The definition of finite sequences and matrices of probability, and addition of matrices of real elements. Formalized Mathematics, 14(3): 101-108, 2006. doi:10.2478/v10037-006-0012-1. CrossrefGoogle Scholar

About the article

Received: 2015-03-26

Published Online: 2015-08-13

Published in Print: 2015-06-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, DOI: https://doi.org/10.1515/forma-2015-0009.

Export Citation

© by Karol Pąk. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in