Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 23, Issue 2

Issues

Introduction to Diophantine Approximation

Yasushige Watase
Published Online: 2015-08-13 | DOI: https://doi.org/10.1515/forma-2015-0010

Abstract

In this article we formalize some results of Diophantine approximation, i.e. the approximation of an irrational number by rationals. A typical example is finding an integer solution (x, y) of the inequality |xθ − y| ≤ 1/x, where 0 is a real number. First, we formalize some lemmas about continued fractions. Then we prove that the inequality has infinitely many solutions by continued fractions. Finally, we formalize Dirichlet’s proof (1842) of existence of the solution [12], [1].

MSC: 11A55; 11J68; 03B35

Keywords: irrational number; approximation; continued fraction; rational number; Dirichlet’s proof

MML: identifier: DIOPHAN1; version: 8.1.045.32.1237

References

  • [1] Alan Baker. A Concise Introduction to the Theory of Numbers. Cambridge University Press, 1984.Google Scholar

  • [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Google Scholar

  • [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Google Scholar

  • [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Google Scholar

  • [6] Czesław Bylinski. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.Google Scholar

  • [7] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.Google Scholar

  • [8] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Google Scholar

  • [9] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Google Scholar

  • [10] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Google Scholar

  • [12] G.H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers. Oxford University Press, 1980.Google Scholar

  • [13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1): 35-40, 1990.Google Scholar

  • [14] Peter Jaeger. Elementary introduction to stochastic finance in discrete time. Formalized Mathematics, 20(1):1-5, 2012. doi:10.2478/v10037-012-0001-5.CrossrefGoogle Scholar

  • [15] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841-845, 1990.Google Scholar

  • [16] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics, 6(4): 573-577, 1997.Google Scholar

  • [17] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Google Scholar

  • [18] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.Google Scholar

  • [19] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.Google Scholar

  • [20] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829-832, 1990.Google Scholar

  • [21] Bo Li, Yan Zhang, and Artur Korniłowicz. Simple continued fractions and their convergents. Formalized Mathematics, 14(3):71-78, 2006. doi:10.2478/v10037-006-0009-9.CrossrefGoogle Scholar

  • [22] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. Formalized Mathematics, 6(2):265-268, 1997.Google Scholar

  • [23] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Google Scholar

  • [24] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.Google Scholar

  • [25] Christoph Schwarzweller. Proth numbers. Formalized Mathematics, 22(2):111-118, 2014. doi:10.2478/forma-2014-0013.CrossrefGoogle Scholar

  • [26] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341-347, 2003.Google Scholar

  • [27] Andrzej Trybulec and Czesław Bylinski. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.Google Scholar

  • [28] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Google Scholar

  • [29] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [30] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.Google Scholar

  • [31] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Google Scholar

  • [32] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Set sequences and monotone class. Formalized Mathematics, 13(4):435-441, 2005. Google Scholar

About the article

Received: 2015-04-19

Published Online: 2015-08-13

Published in Print: 2015-06-01


Citation Information: Formalized Mathematics, Volume 23, Issue 2, Pages 101–106, ISSN (Online) 1898-9934, DOI: https://doi.org/10.1515/forma-2015-0010.

Export Citation

© by Yasushige Watase. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in