[1] Alan Baker. A Concise Introduction to the Theory of Numbers. Cambridge University Press, 1984.Google Scholar

[2] Grzegorz Bancerek. Cardinal numbers. *Formalized Mathematics*, 1(2):377-382, 1990.Google Scholar

[3] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41-46, 1990.Google Scholar

[4] Grzegorz Bancerek. The ordinal numbers. *Formalized Mathematics*, 1(1):91-96, 1990.Google Scholar

[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107-114, 1990.Google Scholar

[6] Czesław Bylinski. The complex numbers. *Formalized Mathematics*, 1(3):507-513, 1990.Google Scholar

[7] Czesław Bylinski. Functions and their basic properties. *Formalized Mathematics*, 1(1): 55-65, 1990.Google Scholar

[8] Czesław Bylinski. Functions from a set to a set. *Formalized Mathematics*, 1(1):153-164, 1990.Google Scholar

[9] Czesław Bylinski. Partial functions. *Formalized Mathematics*, 1(2):357-367, 1990.Google Scholar

[10] Czesław Bylinski. Some basic properties of sets. *Formalized Mathematics*, 1(1):47-53, 1990.Google Scholar

[11] Agata Darmochwał. Finite sets. *Formalized Mathematics*, 1(1):165-167, 1990.Google Scholar

[12] G.H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers. Oxford University Press, 1980.Google Scholar

[13] Krzysztof Hryniewiecki. Basic properties of real numbers. *Formalized Mathematics*, 1(1): 35-40, 1990.Google Scholar

[14] Peter Jaeger. Elementary introduction to stochastic finance in discrete time. *Formalized Mathematics*, 20(1):1-5, 2012. doi:10.2478/v10037-012-0001-5.CrossrefGoogle Scholar

[15] Andrzej Kondracki. Basic properties of rational numbers. *Formalized Mathematics*, 1(5): 841-845, 1990.Google Scholar

[16] Andrzej Kondracki. The Chinese Remainder Theorem. *Formalized Mathematics*, 6(4): 573-577, 1997.Google Scholar

[17] Jarosław Kotowicz. Real sequences and basic operations on them. *Formalized Mathematics*, 1(2):269-272, 1990.Google Scholar

[18] Jarosław Kotowicz. Convergent sequences and the limit of sequences. *Formalized Mathematics*, 1(2):273-275, 1990.Google Scholar

[19] Rafał Kwiatek. Factorial and Newton coefficients. *Formalized Mathematics*, 1(5):887-890, 1990.Google Scholar

[20] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. *Formalized Mathematics*, 1(5):829-832, 1990.Google Scholar

[21] Bo Li, Yan Zhang, and Artur Korniłowicz. Simple continued fractions and their convergents. *Formalized Mathematics*, 14(3):71-78, 2006. doi:10.2478/v10037-006-0009-9.CrossrefGoogle Scholar

[22] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. *Formalized Mathematics*, 6(2):265-268, 1997.Google Scholar

[23] Beata Padlewska. Families of sets. *Formalized Mathematics*, 1(1):147-152, 1990.Google Scholar

[24] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. *Formalized Mathematics*, 6(3):335-338, 1997.Google Scholar

[25] Christoph Schwarzweller. Proth numbers. *Formalized Mathematics*, 22(2):111-118, 2014. doi:10.2478/forma-2014-0013.CrossrefGoogle Scholar

[26] Andrzej Trybulec. On the sets inhabited by numbers. *Formalized Mathematics*, 11(4): 341-347, 2003.Google Scholar

[27] Andrzej Trybulec and Czesław Bylinski. Some properties of real numbers. *Formalized Mathematics*, 1(3):445-449, 1990.Google Scholar

[28] Michał J. Trybulec. Integers. *Formalized Mathematics*, 1(3):501-505, 1990.Google Scholar

[29] Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(1):67-71, 1990.Google Scholar

[30] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1 (1):73-83, 1990.Google Scholar

[31] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(1):181-186, 1990.Google Scholar

[32] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Set sequences and monotone class. *Formalized Mathematics*, 13(4):435-441, 2005. Google Scholar

## Comments (0)