[1] Grzegorz Bancerek. The ordinal numbers. *Formalized Mathematics*, 1(1):91-96, 1990.Google Scholar

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107-114, 1990.Google Scholar

[3] Czesław Bylinski. Binary operations. *Formalized Mathematics*, 1(1):175-180, 1990.Google Scholar

[4] Czesław Bylinski. Functions and their basic properties. *Formalized Mathematics*, 1(1): 55-65, 1990.Google Scholar

[5] Czesław Bylinski. Functions from a set to a set. *Formalized Mathematics*, 1(1):153-164, 1990.Google Scholar

[6] Czesław Bylinski. Partial functions. *Formalized Mathematics*, 1(2):357-367, 1990.Google Scholar

[7] Czesław Bylinski. Some basic properties of sets. *Formalized Mathematics*, 1(1):47-53, 1990.Google Scholar

[8] Agata Darmochwał. Finite sets. *Formalized Mathematics*, 1(1):165-167, 1990.Google Scholar

[9] Joanna Golinska-Pilarek and Taneli Huuskonen. Logic of descriptions. A new approach to the foundations of mathematics and science. Studies in Logic, Grammar and Rhetoric, 40(27), 2012.Google Scholar

[10] Joanna Golinska-Pilarek and Taneli Huuskonen. Grzegorczyk’s non-Fregean logics. In Rafał Urbaniak and Gillman Payette, editors, Applications of Formal Philosophy: The Road Less Travelled, Logic, Reasoning and Argumentation. Springer, 2015.Google Scholar

[11] Andrzej Grzegorczyk. Filozofia logiki i formalna logika niesymplifikacyjna. Zagadnienia Naukoznawstwa, XLVII(4), 2012. In Polish.Google Scholar

[12] Taneli Huuskonen. Polish notation. *Formalized Mathematics*, 23(3):161-176, 2015. doi:1 0.1515/forma-2015-0014.Google Scholar

[13] Beata Padlewska. Families of sets. *Formalized Mathematics*, 1(1):147-152, 1990.Google Scholar

[14] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. *Formalized Mathematics*, 1(3):441-444, 1990.Google Scholar

[15] Roman Suszko. Non-Fregean logic and theories. Analele Universitatii Bucuresti. Acta Logica, 9:105-125, 1968.Google Scholar

[16] Roman Suszko. Semantics for the sentential calculus with identity. Studia Logica, 28: 77-81, 1971.Google Scholar

[17] Andrzej Trybulec. Enumerated sets. *Formalized Mathematics*, 1(1):25-34, 1990.Google Scholar

[18] Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(1):67-71, 1990.Google Scholar

[19] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1 (1):73-83, 1990.Google Scholar

[20] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(1):181-186, 1990.Google Scholar

[21] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. *Formalized Mathematics*, 1(1):85-89, 1990.Google Scholar

## Comments (0)