Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 23, Issue 3 (Sep 2015)

Issues

Convergent Filter Bases

Roland Coghetto
Published Online: 2015-09-30 | DOI: https://doi.org/10.1515/forma-2015-0016

Abstract

We are inspired by the work of Henri Cartan [16], Bourbaki [10] (TG. I Filtres) and Claude Wagschal [34]. We define the base of filter, image filter, convergent filter bases, limit filter and the filter base of tails (fr: filtre des sections).

Keywords: convergence; filter; filter base; Frechet filter; limit; net; sequence

MSC: 54A20; 03B35

MML identifier:: CARDFIL2

References

  • [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Google Scholar

  • [2] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589-593, 1990.Google Scholar

  • [3] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719-725, 1991.Google Scholar

  • [4] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Google Scholar

  • [5] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [6] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics, 6(1):93-107, 1997.Google Scholar

  • [7] Grzegorz Bancerek. Prime ideals and filters. Formalized Mathematics, 6(2):241-247, 1997.Google Scholar

  • [8] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Google Scholar

  • [9] Grzegorz Bancerek, Noboru Endou, and Yuji Sakai. On the characterizations of compactness. Formalized Mathematics, 9(4):733-738, 2001.Google Scholar

  • [10] Nicolas Bourbaki. General Topology: Chapters 1-4. Springer Science and Business Media, 2013.Google Scholar

  • [11] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.Google Scholar

  • [12] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Google Scholar

  • [13] Czesław Bylinski. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.Google Scholar

  • [14] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Google Scholar

  • [15] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [16] Henri Cartan. Théorie des filtres. C. R. Acad. Sci., CCV:595-598, 1937.Google Scholar

  • [17] Marek Chmur. The lattice of natural numbers and the sublattice of it. The set of prime numbers. Formalized Mathematics, 2(4):453-459, 1991.Google Scholar

  • [18] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Google Scholar

  • [19] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. Formalized Mathematics, 6(1):117-121, 1997.Google Scholar

  • [20] Gilbert Lee and Piotr Rudnicki. Dickson’s lemma. Formalized Mathematics, 10(1):29-37, 2002.Google Scholar

  • [21] Yatsuka Nakamura and Hisashi Ito. Basic properties and concept of selected subsequence of zero based finite sequences. Formalized Mathematics, 16(3):283-288, 2008. doi:10.2478/v10037-008-0034-y.CrossrefGoogle Scholar

  • [22] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Google Scholar

  • [23] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Google Scholar

  • [24] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, 5(2):233-236, 1996.Google Scholar

  • [25] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.Google Scholar

  • [26] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341-347, 2003.Google Scholar

  • [27] Andrzej Trybulec. Moore-Smith convergence. Formalized Mathematics, 6(2):213-225, 1997.Google Scholar

  • [28] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1 (1):187-190, 1990.Google Scholar

  • [29] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Google Scholar

  • [30] Wojciech A. Trybulec and Grzegorz Bancerek. Kuratowski - Zorn lemma. Formalized Mathematics, 1(2):387-393, 1990.Google Scholar

  • [31] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [32] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001.Google Scholar

  • [33] Josef Urban. Basic facts about inaccessible and measurable cardinals. Formalized Mathematics, 9(2):323-329, 2001.Google Scholar

  • [34] Claude Wagschal. Topologie et analyse fonctionnelle. Hermann, 1995.Google Scholar

  • [35] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.Google Scholar

  • [36] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Google Scholar

  • [37] Stanisław Zukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215-222, 1990. Google Scholar

About the article

Received: 2015-06-30

Published Online: 2015-09-30

Published in Print: 2015-09-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, DOI: https://doi.org/10.1515/forma-2015-0016.

Export Citation

© by Roland Coghetto. This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. BY-SA 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Roland Coghetto
Formalized Mathematics, 2016, Volume 24, Number 3

Comments (0)

Please log in or register to comment.
Log in