Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year

SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
See all formats and pricing
More options …
Volume 23, Issue 3


Fermat’s Little Theorem via Divisibility of Newton’s Binomial

Rafał Ziobro
Published Online: 2015-09-30 | DOI: https://doi.org/10.1515/forma-2015-0018


Solving equations in integers is an important part of the number theory [29]. In many cases it can be conducted by the factorization of equation’s elements, such as the Newton’s binomial. The article introduces several simple formulas, which may facilitate this process. Some of them are taken from relevant books [28], [14].

In the second section of the article, Fermat’s Little Theorem is proved in a classical way, on the basis of divisibility of Newton’s binomial. Although slightly redundant in its content (another proof of the theorem has earlier been included in [12]), the article provides a good example, how the application of registrations could shorten the length of Mizar proofs [9], [17].

Keywords: factorization; primes; Fermat

MSC: 11A51; 11Y55; 03B35

MML identifier:: NEWTON02


  • [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Google Scholar

  • [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Google Scholar

  • [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Google Scholar

  • [5] Czesław Bylinski. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.Google Scholar

  • [6] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.Google Scholar

  • [7] Czesław Bylinski. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.Google Scholar

  • [8] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [9] Marco B. Caminati and Giuseppe Rosolini. Custom automations in Mizar. Journal of Automated Reasoning, 50(2):147-160, 2013.Google Scholar

  • [10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Google Scholar

  • [11] Yoshinori Fujisawa and Yasushi Fuwa. The Euler’s function. Formalized Mathematics, 6 (4):549-551, 1997.Google Scholar

  • [12] Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Euler’s Theorem and small Fermat’s Theorem. Formalized Mathematics, 7(1):123-126, 1998.Google Scholar

  • [13] Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin’s test for the primality of Fermat numbers. Formalized Mathematics, 7(2):317-321, 1998.Google Scholar

  • [14] Jacek Gancarzewicz. Arytmetyka, 2000. In Polish. Google Scholar

  • [15] Krzysztof Hryniewiecki. Recursive definitions. Formalized Mathematics, 1(2):321-328, 1990.Google Scholar

  • [16] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics, 6(4): 573-577, 1997.Google Scholar

  • [17] Artur Korniłowicz. On rewriting rules in Mizar. Journal of Automated Reasoning, 50(2): 203-210, 2013.Google Scholar

  • [18] Artur Korniłowicz and Piotr Rudnicki. Fundamental Theorem of Arithmetic. Formalized Mathematics, 12(2):179-186, 2004.Google Scholar

  • [19] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.Google Scholar

  • [20] Richard Krueger, Piotr Rudnicki, and Paul Shelley. Asymptotic notation. Part II: Examples and problems. Formalized Mathematics, 9(1):143-154, 2001.Google Scholar

  • [21] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.Google Scholar

  • [22] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829-832, 1990.Google Scholar

  • [23] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Google Scholar

  • [24] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125-130, 1991.Google Scholar

  • [25] Konrad Raczkowski and Andrzej Nedzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.Google Scholar

  • [26] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.Google Scholar

  • [27] Christoph Schwarzweller. Modular integer arithmetic. Formalized Mathematics, 16(3): 247-252, 2008. doi:10.2478/v10037-008-0029-8.CrossrefGoogle Scholar

  • [28] Wacław Sierpinski. Teoria liczb. 1950. In Polish.Google Scholar

  • [29] Wacław Sierpinski. O rozwiazywaniu rownan w liczbach całkowitych, 1956. In Polish.Google Scholar

  • [30] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Google Scholar

  • [31] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.Google Scholar

  • [32] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.Google Scholar

  • [33] Li Yan, Xiquan Liang, and Junjie Zhao. Gauss lemma and law of quadratic reciprocity. Formalized Mathematics, 16(1):23-28, 2008. doi:10.2478/v10037-008-0004-4.CrossrefGoogle Scholar

  • [34] Rafał Ziobro. Some remarkable identities involving numbers. Formalized Mathematics, 22(3):205-208, 2014. doi:10.2478/forma-2014-0023. CrossrefGoogle Scholar

About the article

Received: 2015-06-30

Published Online: 2015-09-30

Published in Print: 2015-09-01

Citation Information: Formalized Mathematics, Volume 23, Issue 3, Pages 215–229, ISSN (Online) 1898-9934, DOI: https://doi.org/10.1515/forma-2015-0018.

Export Citation

© by Rafał Ziobro. This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. BY-SA 3.0

Comments (0)

Please log in or register to comment.
Log in