Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year

SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
See all formats and pricing
More options …
Volume 23, Issue 3


Weak Convergence and Weak Convergence

Keiko Narita / Yasunari Shidama / Noboru Endou
Published Online: 2015-09-30 | DOI: https://doi.org/10.1515/forma-2015-0019


In this article, we deal with weak convergence on sequences in real normed spaces, and weak* convergence on sequences in dual spaces of real normed spaces. In the first section, we proved some topological properties of dual spaces of real normed spaces. We used these theorems for proofs of Section 3. In Section 2, we defined weak convergence and weak* convergence, and proved some properties. By RNS_Real Mizar functor, real normed spaces as real number spaces already defined in the article [18], we regarded sequences of real numbers as sequences of RNS_Real. So we proved the last theorem in this section using the theorem (8) from [25]. In Section 3, we defined weak sequential compactness of real normed spaces. We showed some lemmas for the proof and proved the theorem of weak sequential compactness of reflexive real Banach spaces. We referred to [36], [23], [24] and [3] in the formalization.

Keywords: normed linear spaces; Banach spaces; duality and reflexivity; weak topologies; weak* topologies

MSC: 46E15; 46B10; 03B35

MML identifier:: DUALSP03


  • [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Google Scholar

  • [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [3] Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, 2011.Google Scholar

  • [4] Czesław Bylinski. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.Google Scholar

  • [5] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.Google Scholar

  • [6] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Google Scholar

  • [7] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Google Scholar

  • [8] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [9] Noboru Endou, Yasunari Shidama, and Katsumasa Okamura. Baire’s category theorem and some spaces generated from real normed space. Formalized Mathematics, 14(4): 213-219, 2006. doi:10.2478/v10037-006-0024-x.CrossrefGoogle Scholar

  • [10] Krzysztof Hryniewiecki. Recursive definitions. Formalized Mathematics, 1(2):321-328, 1990.Google Scholar

  • [11] Artur Korniłowicz. Recursive definitions. Part II. Formalized Mathematics, 12(2):167-172, 2004.Google Scholar

  • [12] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1 (3):471-475, 1990.Google Scholar

  • [13] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Google Scholar

  • [14] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.Google Scholar

  • [15] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.Google Scholar

  • [16] Kazuhisa Nakasho, Yuichi Futa, and Yasunari Shidama. Topological properties of real normed space. Formalized Mathematics, 22(3):209-223, 2014. doi:10.2478/forma-2014-0024.CrossrefGoogle Scholar

  • [17] Keiko Narita, Noboru Endou, and Yasunari Shidama. Dual spaces and Hahn-Banach theorem. Formalized Mathematics, 22(1):69-77, 2014. doi:10.2478/forma-2014-0007.CrossrefGoogle Scholar

  • [18] Keiko Narita, Noboru Endou, and Yasunari Shidama. Bidual spaces and reflexivity of real normed spaces. Formalized Mathematics, 22(4):303-311, 2014. doi:10.2478/forma-2014-0030.CrossrefGoogle Scholar

  • [19] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. Formalized Mathematics, 6(2):265-268, 1997.Google Scholar

  • [20] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269-275, 2004.Google Scholar

  • [21] Bogdan Nowak and Andrzej Trybulec. Hahn-Banach theorem. Formalized Mathematics, 4(1):29-34, 1993.Google Scholar

  • [22] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.Google Scholar

  • [23] Michael Reed and Barry Simon. Methods of modern mathematical physics. Vol. 1. Academic Press, New York, 1972.Google Scholar

  • [24] Walter Rudin. Functional Analysis. New York, McGraw-Hill, 2nd edition, 1991.Google Scholar

  • [25] Hideki Sakurai, Hisayoshi Kunimune, and Yasunari Shidama. Uniform boundedness principle. Formalized Mathematics, 16(1):19-21, 2008. doi:10.2478/v10037-008-0003-5.CrossrefGoogle Scholar

  • [26] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004.Google Scholar

  • [27] Yasumasa Suzuki, Noboru Endou, and Yasunari Shidama. Banach space of absolute summable real sequences. Formalized Mathematics, 11(4):377-380, 2003.Google Scholar

  • [28] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990.Google Scholar

  • [29] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341-347, 2003.Google Scholar

  • [30] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Google Scholar

  • [31] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Google Scholar

  • [32] Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850, 1990.Google Scholar

  • [33] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [34] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.Google Scholar

  • [35] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Google Scholar

  • [36] Kosaku Yoshida. Functional Analysis. Springer, 1980.Google Scholar

  • [37] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Inferior limit and superior limit of sequences of real numbers. Formalized Mathematics, 13(3):375-381, 2005. Web of ScienceGoogle Scholar

About the article

Received: 2015-07-01

Published Online: 2015-09-30

Published in Print: 2015-09-01

Citation Information: Formalized Mathematics, Volume 23, Issue 3, Pages 231–241, ISSN (Online) 1898-9934, DOI: https://doi.org/10.1515/forma-2015-0019.

Export Citation

© by Keiko Narita. This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. BY-SA 3.0

Comments (0)

Please log in or register to comment.
Log in