Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 23, Issue 3

Issues

Extended Real-Valued Double Sequence and Its Convergence

Noboru Endou
Published Online: 2015-09-30 | DOI: https://doi.org/10.1515/forma-2015-0021

Abstract

In this article we introduce the convergence of extended realvalued double sequences [16], [17]. It is similar to our previous articles [15], [10]. In addition, we also prove Fatou’s lemma and the monotone convergence theorem for double sequences.

Keywords: double sequence; Fatou’s lemma for double sequence; monotone convergence theorem for double sequence

MSC: 40A05; 40B05; 03B35

MML identifier:: DBLSEQ 3

References

  • [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Google Scholar

  • [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [3] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.Google Scholar

  • [4] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.Google Scholar

  • [5] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.Google Scholar

  • [6] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.Google Scholar

  • [7] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Google Scholar

  • [8] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Google Scholar

  • [9] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [10] Noboru Endou. Double series and sums. Formalized Mathematics, 22(1):57-68, 2014. doi:10.2478/forma-2014-0006.CrossrefGoogle Scholar

  • [11] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53-70, 2006. doi:10.2478/v10037-006-0008-x.CrossrefGoogle Scholar

  • [12] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. Formalized Mathematics, 9(3):491-494, 2001.Google Scholar

  • [13] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495-500, 2001.Google Scholar

  • [14] Noboru Endou, Keiko Narita, and Yasunari Shidama. The Lebesgue monotone convergence theorem. Formalized Mathematics, 16(2):167-175, 2008. doi:10.2478/v10037-008-0023-1.CrossrefGoogle Scholar

  • [15] Noboru Endou, Hiroyuki Okazaki, and Yasunari Shidama. Double sequences and limits. Formalized Mathematics, 21(3):163-170, 2013. doi:10.2478/forma-2013-0018.CrossrefGoogle Scholar

  • [16] Gerald B. Folland. Real Analysis: Modern Techniques and Their Applications. Wiley, 2 edition, 1999.Google Scholar

  • [17] D.J.H. Garling. A Course in Mathematical Analysis: Volume 1, Foundations and Elementary Real Analysis, volume 1. Cambridge University Press, 2013.Google Scholar

  • [18] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841-845, 1990.Google Scholar

  • [19] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1 (3):471-475, 1990.Google Scholar

  • [20] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.Google Scholar

  • [21] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. Formalized Mathematics, 6(2):265-268, 1997.Google Scholar

  • [22] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Google Scholar

  • [23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.Google Scholar

  • [25] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Google Scholar

  • [26] Hiroshi Yamazaki, Noboru Endou, Yasunari Shidama, and Hiroyuki Okazaki. Inferior limit, superior limit and convergence of sequences of extended real numbers. Formalized Mathematics, 15(4):231-236, 2007. doi:10.2478/v10037-007-0026-3. CrossrefGoogle Scholar

About the article

Received: 2015-07-01

Published Online: 2015-09-30

Published in Print: 2015-09-01


Citation Information: Formalized Mathematics, Volume 23, Issue 3, Pages 253–277, ISSN (Online) 1898-9934, DOI: https://doi.org/10.1515/forma-2015-0021.

Export Citation

© by Noboru Endou. This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. BY-SA 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Noboru Endou
Formalized Mathematics, 2017, Volume 25, Number 3

Comments (0)

Please log in or register to comment.
Log in