Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2015: 0.134
Source Normalized Impact per Paper (SNIP) 2015: 0.686
Impact per Publication (IPP) 2015: 0.296

Open Access
Online
ISSN
1898-9934
See all formats and pricing
In This Section
Volume 23, Issue 3 (Sep 2015)

Issues

Extended Real-Valued Double Sequence and Its Convergence

Noboru Endou
  • Gifu National College of Technology Gifu, Japan
Published Online: 2015-09-30 | DOI: https://doi.org/10.1515/forma-2015-0021

Abstract

In this article we introduce the convergence of extended realvalued double sequences [16], [17]. It is similar to our previous articles [15], [10]. In addition, we also prove Fatou’s lemma and the monotone convergence theorem for double sequences.

Keywords: double sequence; Fatou’s lemma for double sequence; monotone convergence theorem for double sequence

MSC: 40A05; 40B05; 03B35

MML identifier:: DBLSEQ 3

References

  • [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.

  • [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

  • [3] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.

  • [4] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.

  • [5] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.

  • [6] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.

  • [7] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

  • [8] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

  • [9] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

  • [10] Noboru Endou. Double series and sums. Formalized Mathematics, 22(1):57-68, 2014. doi:10.2478/forma-2014-0006. [Crossref]

  • [11] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53-70, 2006. doi:10.2478/v10037-006-0008-x. [Crossref]

  • [12] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. Formalized Mathematics, 9(3):491-494, 2001.

  • [13] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495-500, 2001.

  • [14] Noboru Endou, Keiko Narita, and Yasunari Shidama. The Lebesgue monotone convergence theorem. Formalized Mathematics, 16(2):167-175, 2008. doi:10.2478/v10037-008-0023-1. [Crossref]

  • [15] Noboru Endou, Hiroyuki Okazaki, and Yasunari Shidama. Double sequences and limits. Formalized Mathematics, 21(3):163-170, 2013. doi:10.2478/forma-2013-0018. [Crossref]

  • [16] Gerald B. Folland. Real Analysis: Modern Techniques and Their Applications. Wiley, 2 edition, 1999.

  • [17] D.J.H. Garling. A Course in Mathematical Analysis: Volume 1, Foundations and Elementary Real Analysis, volume 1. Cambridge University Press, 2013.

  • [18] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841-845, 1990.

  • [19] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1 (3):471-475, 1990.

  • [20] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.

  • [21] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. Formalized Mathematics, 6(2):265-268, 1997.

  • [22] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

  • [23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

  • [24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.

  • [25] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

  • [26] Hiroshi Yamazaki, Noboru Endou, Yasunari Shidama, and Hiroyuki Okazaki. Inferior limit, superior limit and convergence of sequences of extended real numbers. Formalized Mathematics, 15(4):231-236, 2007. doi:10.2478/v10037-007-0026-3. [Crossref]

About the article

Received: 2015-07-01

Published Online: 2015-09-30

Published in Print: 2015-09-01



Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, DOI: https://doi.org/10.1515/forma-2015-0021. Export Citation

© by Noboru Endou. This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. (CC BY-SA 3.0)

Comments (0)

Please log in or register to comment.
Log in