[1] Grzegorz Bancerek. König’s theorem. *Formalized Mathematics*, 1(**3**):589–593, 1990.

[2] Grzegorz Bancerek. On powers of cardinals. *Formalized Mathematics*, 3(**1**):89–93, 1992.

[3] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(**1**):41–46, 1990.

[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(**1**):107–114, 1990.

[5] Czesław Byliński. The complex numbers. *Formalized Mathematics*, 1(**3**):507–513, 1990.

[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. *Formalized Mathematics*, 1(**3**):529–536, 1990.

[7] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(**1**): 55–65, 1990.

[8] Czesław Byliński. The sum and product of finite sequences of real numbers. *Formalized Mathematics*, 1(**4**):661–668, 1990.

[9] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(**1**):47–53, 1990.

[10] Agata Darmochwał. The Euclidean space. *Formalized Mathematics*, 2(**4**):599–603, 1991.

[11] Michel Marie Deza and Elena Deza. *Encyclopedia of distances*. Springer, 2009.

[12] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. *Formalized Mathematics*, 9(**3**):495–500, 2001.

[13] Adam Grabowski. On the subcontinua of a real line. *Formalized Mathematics*, 11(**3**): 313–322, 2003.

[14] Adam Grabowski. On the Borel families of subsets of topological spaces. *Formalized Mathematics*, 13(**4**):453–461, 2005.

[15] Artur Korniłowicz. The correspondence between *n*-dimensional Euclidean space and the product of *n* real lines. *Formalized Mathematics*, 18(**1**):81–85, 2010. doi:10.2478/v10037-010-0011-0. [Crossref]

[16] Jean Mawhin. *Analyse: fondements, techniques, évolution*. De Boeck, 1992.

[17] Beata Padlewska. Families of sets. *Formalized Mathematics*, 1(**1**):147–152, 1990.

[18] Karol Pak. Tietze extension theorem for *n*-dimensional spaces. *Formalized Mathematics*, 22(**1**):11–19, 2014. doi:10.2478/forma-2014-0002. [Crossref]

[19] Jan Popiołek. Some properties of functions modul and signum. *Formalized Mathematics*, 1(**2**):263–264, 1990.

[20] Marco Riccardi. The definition of topological manifolds. *Formalized Mathematics*, 19(**1**): 41–44, 2011. doi:10.2478/v10037-011-0007-4. [Crossref]

[21] Marco Riccardi. Planes and spheres as topological manifolds. Stereographic projection. *Formalized Mathematics*, 20(**1**):41–45, 2012. doi:10.2478/v10037-012-0006-0. [Crossref]

[22] Jean Schmets. Analyse mathematique. Notes de cours, Université de Liège, 337 pages, 2004.

[23] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. *Formalized Mathematics*, 5(**2**):233–236, 1996.

[24] Andrzej Trybulec. Binary operations applied to functions. *Formalized Mathematics*, 1 (**2**):329–334, 1990.

[25] Wojciech A. Trybulec. Pigeon hole principle. *Formalized Mathematics*, 1(**3**):575–579, 1990.

[26] Wojciech A. Trybulec. Basis of real linear space. *Formalized Mathematics*, 1(**5**):847–850, 1990.

[27] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(**1**):181–186, 1990.

## Comments (0)