Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year

SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
See all formats and pricing
More options …
Volume 24, Issue 2 (Jun 2016)


Binary Relations-based Rough Sets – an Automated Approach

Adam Grabowski
  • Institute of Informatics, University of Białystok, Ciołkowskiego 1M, 15-245 Białystok, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-12-08 | DOI: https://doi.org/10.1515/forma-2016-0011


Rough sets, developed by Zdzisław Pawlak [12], are an important tool to describe the state of incomplete or partially unknown information. In this article, which is essentially the continuation of [8], we try to give the characterization of approximation operators in terms of ordinary properties of underlying relations (some of them, as serial and mediate relations, were not available in the Mizar Mathematical Library [11]). Here we drop the classical equivalence- and tolerance-based models of rough sets trying to formalize some parts of [18].

The main aim of this Mizar article is to provide a formal counterpart for the rest of the paper of William Zhu [18]. In order to do this, we recall also Theorem 3 from Y.Y. Yao’s paper [17]. The first part of our formalization (covering first seven pages) is contained in [8]. Now we start from page 5003, sec. 3.4. [18]. We formalized almost all numbered items (definitions, propositions, theorems, and corollaries), with the exception of Proposition 7, where we stated our theorem only in terms of singletons. We provided more thorough discussion of the property positive alliance and its connection with seriality and reflexivity (and also transitivity). Examples were not covered as a rule as we tried to construct a more general mechanism of finding appropriate models for approximation spaces in Mizar providing more automatization than it is now [10].

Of course, we can see some more general applications of some registrations of clusters, essentially not dealing with the notion of an approximation: the notions of an alliance binary relation were not defined in the Mizar Mathematical Library before, and we should think about other properties which are also absent but needed in the context of rough approximations [9], [5]. Via theory merging, using mechanisms described in [6] and [7], such elementary constructions can be extended to other frameworks.

Keywords: rough set; lower approximation; upper approximation; binary relation

MSC 2010: 03E70; 03E99; 03B35


  • [1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.Google Scholar

  • [2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.Google Scholar

  • [3] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.Google Scholar

  • [4] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.Google Scholar

  • [5] Adam Grabowski. On the computer-assisted reasoning about rough sets. In B. Dunin-Kȩplicz, A. Jankowski, A. Skowron, and M. Szczuka, editors, International Workshop on Monitoring, Security, and Rescue Techniques in Multiagent Systems Location, volume 28 of Advances in Soft Computing, pages 215–226, Berlin, Heidelberg, 2005. Springer-Verlag. doi:10.1007/3-540-32370-8_15. CrossrefGoogle Scholar

  • [6] Adam Grabowski. Efficient rough set theory merging. Fundamenta Informaticae, 135(4): 371–385, 2014. doi:10.3233/FI-2014-1129. CrossrefWeb of ScienceGoogle Scholar

  • [7] Adam Grabowski. Mechanizing complemented lattices within Mizar system. Journal of Automated Reasoning, 55:211–221, 2015. doi:10.1007/s10817-015-9333-5. CrossrefGoogle Scholar

  • [8] Adam Grabowski. Relational formal characterization of rough sets. Formalized Mathematics, 21(1):55–64, 2013. doi:10.2478/forma-2013-0006. CrossrefGoogle Scholar

  • [9] Adam Grabowski and Magdalena Jastrzębska. A note on a formal approach to rough operators. In Marcin S. Szczuka and Marzena Kryszkiewicz et al., editors, Rough Sets and Current Trends in Computing – 7th International Conference, RSCTC 2010, Warsaw, Poland, June 28-30, 2010. Proceedings, volume 6086 of Lecture Notes in Computer Science, pages 307–316. Springer, 2010. doi:10.1007/978-3-642-13529-3_33. Google Scholar

  • [10] Adam Grabowski and Magdalena Jastrzębska. Rough set theory from a math-assistant perspective. In Rough Sets and Intelligent Systems Paradigms, International Conference, RSEISP 2007, Warsaw, Poland, June 28–30, 2007, Proceedings, pages 152–161, 2007. doi:10.1007/978-3-540-73451-2_17. CrossrefGoogle Scholar

  • [11] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1. CrossrefGoogle Scholar

  • [12] Zdzisław Pawlak. Rough sets. International Journal of Parallel Programming, 11:341–356, 1982. doi:10.1007/BF01001956. CrossrefGoogle Scholar

  • [13] Krzysztof Retel. Properties of first and second order cutting of binary relations. Formalized Mathematics, 13(3):361–365, 2005.Google Scholar

  • [14] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1 (1):187–190, 1990.Google Scholar

  • [15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.Google Scholar

  • [16] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.Google Scholar

  • [17] Y.Y. Yao. Two views of the theory of rough sets in finite universes. International Journal of Approximate Reasoning, 15(4):291–317, 1996. doi:10.1016/S0888-613X(96)00071-0. CrossrefGoogle Scholar

  • [18] William Zhu. Generalized rough sets based on relations. Information Sciences, 177: 4997–5011, 2007. Web of ScienceGoogle Scholar

About the article

Received: 2016-02-15

Published Online: 2016-12-08

Published in Print: 2016-06-01

Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.1515/forma-2016-0011.

Export Citation

© 2016 Adam Grabowski, published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. BY-SA 3.0

Comments (0)

Please log in or register to comment.
Log in