Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 24, Issue 4 (Dec 2016)

Issues

The Basic Existence Theorem of Riemann-Stieltjes Integral

Kazuhisa Nakasho / Keiko Narita / Yasunari Shidama
Published Online: 2017-02-23 | DOI: https://doi.org/10.1515/forma-2016-0021

Summary

In this article, the basic existence theorem of Riemann-Stieltjes integral is formalized. This theorem states that if f is a continuous function and ρ is a function of bounded variation in a closed interval of real line, f is Riemann-Stieltjes integrable with respect to ρ. In the first section, basic properties of real finite sequences are formalized as preliminaries. In the second section, we formalized the existence theorem of the Riemann-Stieltjes integral. These formalizations are based on [15], [12], [10], and [11].

Keywords: Riemann-Stieltjes integral; bounded variation; continuous function

MSC 2010: 26A42; 26A45; 03B35

References

  • [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.Google Scholar

  • [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.Google Scholar

  • [3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.Google Scholar

  • [4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.Google Scholar

  • [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.Google Scholar

  • [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.Google Scholar

  • [7] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.Google Scholar

  • [8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.Google Scholar

  • [9] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Darboux’s theorem. Formalized Mathematics, 9(1):197–200, 2001.Google Scholar

  • [10] S.L. Gupta and Nisha Rani. Fundamental Real Analysis. Vikas Pub., 1986. Google Scholar

  • [11] Einar Hille. Methods in classical and functional analysis. Addison-Wesley Publishing Co., Halsted Press, 1974. Google Scholar

  • [12] H. Kestelman. Modern theories of integration. Dover Publications, 2nd edition, 1960. Google Scholar

  • [13] Keiko Narita, Noboru Endou, and Yasunari Shidama. Riemann integral of functions from ℝ into real Banach space. Formalized Mathematics, 21(2):145–152, 2013. doi:10.2478/forma-2013-0016.CrossrefGoogle Scholar

  • [14] Keiko Narita, Kazuhisa Nakasho, and Yasunari Shidama. Riemann-Stieltjes integral. Formalized Mathematics, 24(3):199–204, 2016. doi:10.1515/forma-2016-0016.CrossrefGoogle Scholar

  • [15] Daniel W. Stroock. A Concise Introduction to the Theory of Integration. Springer Science & Business Media, 1999. Google Scholar

  • [16] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329–334, 1990.Google Scholar

  • [17] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.Google Scholar

  • [18] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.Google Scholar

  • [19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.Google Scholar

About the article

Received: 2016-10-18

Published Online: 2017-02-23

Published in Print: 2016-12-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.1515/forma-2016-0021.

Export Citation

© 2016 Kazuhisa Nakasho et al., published by De Gruyter Open. This work is licensed under version 3.0 of the Creative Commons Attribution–ShareAlike License. BY-SA 3.0

Comments (0)

Please log in or register to comment.
Log in