[1] George E. Andrews, Richard Askey, and Ranjan Roy. *Special Functions*. Cambridge University Press, 1999. Google Scholar

[2] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(**1**):41–46, 1990.Google Scholar

[3] Czesław Byliński. The complex numbers. *Formalized Mathematics*, 1(**3**):507–513, 1990.Google Scholar

[4] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(**1**): 55–65, 1990.Google Scholar

[5] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(**1**):153–164, 1990.Google Scholar

[6] Lokenath Debnath. *The Legacy of Leonhard Euler: A Tricentennial Tribute*. World Scientific, 2010. Google Scholar

[7] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from ℝ to ℝ and integrability for continuous functions. *Formalized Mathematics*, 9(**2**):281–284, 2001.Google Scholar

[8] Konrad Knopp. *Infinite Sequences and Series*. Dover Publications, 1956. ISBN 978-0-486-60153-3. Google Scholar

[9] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. *Formalized Mathematics*, 1(**4**):703–709, 1990.Google Scholar

[10] Jarosław Kotowicz. Monotone real sequences. Subsequences. *Formalized Mathematics*, 1 (**3**):471–475, 1990.Google Scholar

[11] Jarosław Kotowicz. Real sequences and basic operations on them. *Formalized Mathematics*, 1(**2**):269–272, 1990.Google Scholar

[12] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. *Formalized Mathematics*, 1(**3**):477–481, 1990.Google Scholar

[13] Rafał Kwiatek. Factorial and Newton coefficients. *Formalized Mathematics*, 1(**5**):887–890, 1990.Google Scholar

[14] Xiquan Liang and Bing Xie. Inverse trigonometric functions arctan and arccot. *Formalized Mathematics*, 16(**2**):147–158, 2008. doi:10.2478/v10037-008-0021-3.CrossrefGoogle Scholar

[15] Akira Nishino and Yasunari Shidama. The Maclaurin expansions. *Formalized Mathematics*, 13(**3**):421–425, 2005.Google Scholar

[16] Chanapat Pacharapokin, Kanchun, and Hiroshi Yamazaki. Formulas and identities of trigonometric functions. *Formalized Mathematics*, 12(**2**):139–141, 2004.Google Scholar

[17] Konrad Raczkowski. Integer and rational exponents. *Formalized Mathematics*, 2(**1**):125–130, 1991.Google Scholar

[18] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. *Formalized Mathematics*, 2(**2**):213–216, 1991.Google Scholar

[19] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. *Formalized Mathematics*, 6(**3**):335–338, 1997.Google Scholar

[20] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. *Formalized Mathematics*, 7(**2**):255–263, 1998.Google Scholar

## Comments (0)