Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 25, Issue 1

Issues

All Liouville Numbers are Transcendental

Artur Korniłowicz / Adam Naumowicz / Adam Grabowski
Published Online: 2017-05-11 | DOI: https://doi.org/10.1515/forma-2017-0004

Summary

In this Mizar article, we complete the formalization of one of the items from Abad and Abad’s challenge list of “Top 100 Theorems” about Liouville numbers and the existence of transcendental numbers. It is item #18 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/. Liouville numbers were introduced by Joseph Liouville in 1844 [15] as an example of an object which can be approximated “quite closely” by a sequence of rational numbers. A real number x is a Liouville number iff for every positive integer n, there exist integers p and q such that q > 1 and

It is easy to show that all Liouville numbers are irrational. The definition and basic notions are contained in [10], [1], and [12]. Liouvile constant, which is defined formally in [12], is the first explicit transcendental (not algebraic) number, another notable examples are e and π [5], [11], and [4]. Algebraic numbers were formalized with the help of the Mizar system [13] very recently, by Yasushige Watase in [23] and now we expand these techniques into the area of not only pure algebraic domains (as fields, rings and formal polynomials), but also for more settheoretic fields. Finally we show that all Liouville numbers are transcendental, based on Liouville’s theorem on Diophantine approximation.

MSC: 11J81; 11K60; 03B35

Keywords: Liouville number; Diophantine approximation; transcendental number; Liouville constant

MML: identifier: LIOUVIL1; version: 8.1.05 5.40.1286

References

  • [1] Tom M. Apostol. Modular Functions and Dirichlet Series in Number Theory. Springer- Verlag, 2nd edition, 1997.Google Scholar

  • [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Google Scholar

  • [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Google Scholar

  • [4] Sophie Bernard, Yves Bertot, Laurence Rideau, and Pierre-Yves Strub. Formal proofs of transcendence for e and _ as an application of multivariate and symmetric polynomials. In Jeremy Avigad and Adam Chlipala, editors, Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, pages 76-87. ACM, 2016. doi: 10.1145/2854065.2854072.CrossrefGoogle Scholar

  • [5] Jesse Bingham. Formalizing a proof that e is transcendental. Journal of Formalized Reasoning, 4:71-84, 2011.Google Scholar

  • [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.Google Scholar

  • [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.Google Scholar

  • [8] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.Google Scholar

  • [9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [10] J.H. Conway and R.K. Guy. The Book of Numbers. Springer-Verlag, 1996.Google Scholar

  • [11] Manuel Eberl. Liouville numbers. Archive of Formal Proofs, December 2015. http://isa-afp.org/entries/Liouville_Numbers.shtml, Formal proof development.Google Scholar

  • [12] Adam Grabowski and Artur Korniłowicz. Introduction to Liouville numbers. Formalized Mathematics, 25(1):39-48, 2017. doi: 10.1515/forma-2017-0003.CrossrefGoogle Scholar

  • [13] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191-198, 2015. doi: 10.1007/s10817-015-9345-1.CrossrefGoogle Scholar

  • [14] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829-832, 1990.Google Scholar

  • [15] Joseph Liouville. Nouvelle d´emonstration d’un th´eor`eme sur les irrationnelles alg´ebriques, ins´er´e dans le Compte Rendu de la derni`ere s´eance. Compte Rendu Acad. Sci. Paris, S´er.A (18):910-911, 1844.Google Scholar

  • [16] Anna Justyna Milewska. The field of complex numbers. Formalized Mathematics, 9(2): 265-269, 2001.Google Scholar

  • [17] Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339-346, 2001.Google Scholar

  • [18] Robert Milewski. The evaluation of polynomials. Formalized Mathematics, 9(2):391-395, 2001.Google Scholar

  • [19] Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461-470, 2001.Google Scholar

  • [20] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97-104, 1991.Google Scholar

  • [21] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1 (3):495-500, 1990.Google Scholar

  • [22] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.Google Scholar

  • [23] Yasushige Watase. Algebraic numbers. Formalized Mathematics, 24(4):291-299, 2016. doi: 10.1515/forma-2016-0025.CrossrefGoogle Scholar

  • [24] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.Google Scholar

About the article

Received: 2017-02-23

Published Online: 2017-05-11

Published in Print: 2017-03-28


Citation Information: Formalized Mathematics, Volume 25, Issue 1, Pages 49–54, ISSN (Online) 1898-9934, DOI: https://doi.org/10.1515/forma-2017-0004.

Export Citation

© by Artur Korniłowicz. This work is licensed under version 3.0 of the Creative Commons Attribution–ShareAlike License. BY-SA 3.0 LEGALCODE

Comments (0)

Please log in or register to comment.
Log in