Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Forum Mathematicum

Managing Editor: Bruinier, Jan Hendrik

Ed. by Cohen, Frederick R. / Droste, Manfred / Darmon, Henri / Duzaar, Frank / Echterhoff, Siegfried / Gordina, Maria / Neeb, Karl-Hermann / Shahidi, Freydoon / Sogge, Christopher D. / Takayama, Shigeharu / Wienhard, Anna

IMPACT FACTOR 2018: 0.867

CiteScore 2018: 0.71

SCImago Journal Rank (SJR) 2018: 0.898
Source Normalized Impact per Paper (SNIP) 2018: 0.964

Mathematical Citation Quotient (MCQ) 2018: 0.71

See all formats and pricing
More options …
Volume 26, Issue 2


Centralizer of an idempotent in a reductive monoid

Mohan S. Putcha
Published Online: 2011-11-08 | DOI: https://doi.org/10.1515/form.2011.163


Let M be a reductive monoid. If e is an idempotent in M, we prove that the centralizer M(e) of e in M is a regular monoid with a finite graded poset of 𝒥-classes. We compute this poset explicitly when M is of canonical or dual canonical type and e is the relevant pivotal idempotent.

Keywords: Reductive monoid; centralizer; idempotent; canonical monoid

MSC: 20M32; 20G99

About the article

Received: 2011-04-07

Revised: 2011-10-19

Published Online: 2011-11-08

Published in Print: 2014-03-01

Citation Information: Forum Mathematicum, Volume 26, Issue 2, Pages 323–335, ISSN (Online) 1435-5337, ISSN (Print) 0933-7741, DOI: https://doi.org/10.1515/form.2011.163.

Export Citation

© 2015 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in