[1]

Abdaoui K., Ammar F. and Makhlouf A.,
Hom-alternative, Hom-Malcev and Hom-Jordan superalgebras,
Comm. Algebra, to appear.
Google Scholar

[2]

Aizawa N. and Sato H.,
*q*-deformation of the Virasoro algebra with central extension,
Phys. Lett. B 256 (1991), no. 2, 185–190.
Google Scholar

[3]

Alvarez-Gaumé L., Gomez C. and Sierra G.,
Quantum group interpretation of some conformal field theories,
Phys. Lett. B 220 (1989), no. 1–2, 142–152.
Google Scholar

[4]

Ammar F., Ejbehi Z. and Makhlouf A.,
Cohomology and deformations of Hom-algebras,
J. Lie Theory 21 (2011), no. 4, 813–836.
Google Scholar

[5]

Ammar F., Mabrouk S. and Makhlouf A.,
Representations and cohomology of *n*-ary multiplicative Hom-Nambu–Lie algebras,
J. Geom. Phys. 61 (2011), no. 10, 1898–1913.
Web of ScienceGoogle Scholar

[6]

Ammar F. and Makhlouf A.,
Hom-Lie superalgebras and Hom-Lie admissible superalgebras,
J. Algebra 324 (2010), 1513–1528.
Web of ScienceGoogle Scholar

[7]

Ammar F., Makhlouf A. and Saadaoui N.,
Cohomology of Hom-Lie superalgebras and *q*-deformed Witt superalgebra,
Czechoslovak Math. J. 63 (2013), 721–761.
Web of ScienceGoogle Scholar

[8]

Ammar F., Makhlouf A. and Silvestrov S.,
Ternary *q*-Virasoro–Witt Hom-Nambu–Lie algebras,
J. Phys. A 43 (2010), Artilce ID 265204.
Google Scholar

[9]

Benayadi S. and Makhlouf A.,
Hom-Lie algebras with symmetric invariant nondegenerate bilinear form,
J. Geom. Phys. 76 (2014), 38–60.
Google Scholar

[10]

Bordemann M., Elchinger O. and Makhlouf A.,
Twisting Poisson algebras, coPoisson algebras and quantization,
Trav. Math. 20 (2012), 83–120.
Google Scholar

[11]

Caenepeel S. and Goyvaerts I.,
Monoidal Hom-Hopf algebras,
Comm. Algebra 39 (2011), no. 6, 2216–2240.
Google Scholar

[12]

Chaichian M., Ellinas D. and Popowicz Z.,
Quantum conformal algebra with central extension,
Phys. Lett. B 248 (1990), no. 1–2, 95–99.
Google Scholar

[13]

Chaichian M., Isaev A., Lukierski J., Popowicz Z. and Prešnajder P.,
*q*-deformations of Virasoro algebra and conformal dimensions,
Phys. Lett. B 262 (1991), no. 1, 32–38.
Google Scholar

[14]

Chaichian M., Kulish P. and Lukierski J.,
*q*-deformed Jacobi identity, *q*-oscillators and *q*-deformed infinite-dimensional algebras,
Phys. Lett. B 237 (1990), no. 3–4, 401–406.
Google Scholar

[15]

Chaichian M., Popowicz Z. and Prešnajder P.,
*q*-Virasoro algebra and its relation to the *q*-deformed KdV system,
Phys. Lett. B 249 (1990), no. 1, 63–65.
Google Scholar

[16]

Curtright T. and Zachos C.,
Deforming maps for quantum algebras,
Phys. Lett. B 243 (1990), no. 3, 237–244.
Google Scholar

[17]

Damaskinsky E. V. and Kulish P. P.,
Deformed oscillators and their applications (in Russian),
Zap. Nauchn. Sem. Leningr. Otdel. Mat. Inst. Steklov. 189 (1991), 37–74;
translation in J. Sov. Math. 62 (1992), 2963–2986.
Google Scholar

[18]

Daskaloyannis C.,
Generalized deformed Virasoro algebras,
Modern Phys. Lett. A 07 (1992), no. 9, 809–816.
Google Scholar

[19]

Elhamdadi M. and Makhlouf A.,
Hom-quasi-bialgebras,
Hopf Algebras and Tensor Categories,
Contemp. Math. 585,
American Mathematical Society, Providence (2013), 227–245.
Google Scholar

[20]

Frégier Y., Gohr A. and Silvestrov S.,
Unital algebras of Hom-associative type and surjective or injective twistings,
J. Gen. Lie Theory Appl. 3 (2009), no. 4, 285–295.
Google Scholar

[21]

Gohr A.,
On hom-algebras with surjective twisting,
J. Algebra 324 (2010), no. 7, 1483–1491.
Web of ScienceGoogle Scholar

[22]

Hartwig J. T.,
Generalized derivations on algebras and highest weight representations of the Virasoro algebra,
Master thesis, Lund University, 2002, https://sites.google.com/site/jonashartwig/xjobb1.pdf?attredirects=0.

[23]

Hartwig J. T., Larsson D. and Silvestrov S. D.,
Deformations of Lie algebras using σ-derivations,
J. Algebra 295 (2006), no. 2, 314–361.
Google Scholar

[24]

Hu N.,
*q*-Witt algebras, *q*-Virasoro algebra, *q*-Lie algebras, *q*-holomorph structure and representations,
Algebra Colloq. 6 (1999), 51–70.
Google Scholar

[25]

Kassel C.,
Cyclic homology of differential operators, the virasoro algebra and a *q*-analogue,
Comm. Math. Phys. 146 (1992), no. 2, 343–356.
Google Scholar

[26]

Larsson D. and Silvestrov S. D.,
Quasi-Hom-Lie algebras, central extensions and 2-cocycle-like identities,
J. Algebra 288 (2005), 321–344.
Google Scholar

[27]

Larsson D. and Silvestrov S. D.,
Quasi-Lie algebras,
Noncommutative Geometry and Representation Theory in Mathematical Physics,
Contemp. Math. 391,
American Mathematical Society, Providence (2005), 241–248.
Google Scholar

[28]

Larsson D. and Silvestrov S. D.,
Quasi-Deformations of $\U0001d530{\U0001d529}_{2}(\mathbb{F})$ using twisted derivations,
Comm. Algebra 35 (2007), 4303–4318.
Web of ScienceGoogle Scholar

[29]

Liu K.-Q.,
Characterizations of the quantum Witt algebra,
Lett. Math. Phys. 24 (1992), no. 4, 257–265.
Google Scholar

[30]

Makhlouf A.,
Paradigm of nonassociative Hom-algebras and Hom-superalgebras,
Proceedings of Jordan Structures in Algebra and Analysis Meeting (Almería 2009),
Universidad de Almería, Almería (2010), 143–177.
Google Scholar

[31]

Makhlouf A. and Panaite F.,
Yetter–Drinfeld modules for Hom-bialgebras,
J. Math. Phys. 55 (2014), no. 1, Article ID 013501.
Google Scholar

[32]

Makhlouf A. and Silvestrov S. D.,
Hom-algebra structures,
J. Gen. Lie Theory Appl. 2 (2008), no. 2, 51–64.
Google Scholar

[33]

Makhlouf A. and Silvestrov S. D.,
Hom-algebras and Hom-coalgebras,
J. Algebra Appl. 9 (2010), no. 4, 553–589.
Web of ScienceGoogle Scholar

[34]

Makhlouf A. and Silvestrov S. D.,
Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras,
Generalized Lie Theory in Mathematics, Physics and Beyond,
Springer, Berlin (2010), 189–206.
Google Scholar

[35]

Makhlouf A. and Silvestrov S. D.,
Notes on Formal deformations of Hom-associative and Hom-Lie algebras,
Forum Math. 22 (2010), no. 4, 715–739.
Google Scholar

[36]

Makhlouf A. and Yau D.,
Rota–Baxter Hom-Lie-admissible algebras,
Comm. Algebra 42 (2014), 1231–1257.
Google Scholar

[37]

Sheng Y.,
Representations of Hom-Lie algebras,
Algebr. Represent. Theory 15 (2012), no. 6, 1081–1098.
Google Scholar

[38]

Yau D.,
Hom-algebras and homology,
J. Lie Theory 19 (2009), no. 2, 409–421.
Google Scholar

[39]

Yau D.,
The Hom-Yang–Baxter equation, Hom-Lie algebras and quasitriangular bialgebras,
J. Phys. A 42 (2009), no. 16, Article ID 165202.
Google Scholar

[40]

Yau D.,
Hom-bialgebras and comodule Hom-algebras,
Int. Electron. J. Algebra 8 (2010), 45–64.
Google Scholar

[41]

Yau D.,
Non-commutative Hom-Poisson algebras,
preprint 2010, http://arxiv.org/abs/1010.3408.

[42]

Yau D.,
The Hom-Yang–Baxter equation and Hom-Lie algebras,
J. Math. Phys. 52 (2011), Article ID 053502.
Web of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.