Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Forum Mathematicum

Managing Editor: Bruinier, Jan Hendrik

Ed. by Brüdern, Jörg / Cohen, Frederick R. / Droste, Manfred / Darmon, Henri / Duzaar, Frank / Echterhoff, Siegfried / Gordina, Maria / Neeb, Karl-Hermann / Shahidi, Freydoon / Sogge, Christopher D. / Takayama, Shigeharu / Wienhard, Anna


IMPACT FACTOR 2017: 0.695
5-year IMPACT FACTOR: 0.750

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.966
Source Normalized Impact per Paper (SNIP) 2017: 0.889

Mathematical Citation Quotient (MCQ) 2016: 0.75

Online
ISSN
1435-5337
See all formats and pricing
More options …
Volume 28, Issue 4

Issues

Brackets with (τ,σ)-derivations and (p,q)-deformations of Witt and Virasoro algebras

Olivier Elchinger / Karl Lundengård / Abdenacer Makhlouf
  • Corresponding author
  • Laboratoire de Mathématiques, Informatique et Applications, Université de Haute Alsace, Mulhouse, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergei D. Silvestrov
Published Online: 2015-07-14 | DOI: https://doi.org/10.1515/forum-2014-0132

Abstract

The aim of this paper is to study some brackets defined on (τ,σ)-derivations satisfying quasi-Lie identities. Moreover, we provide examples of (p,q)-deformations of Witt and Virasoro algebras as well as 𝔰𝔩(2) algebra. These constructions generalize the results obtained by Hartwig, Larsson and Silvestrov on σ-derivations, arising in connection with discretizations and deformations of algebras of vector fields.

Keywords: quasi-Lie algebra; Hom-Lie algebra; Witt algebra; Virasoro algebra

MSC 2010: 17B37; 17A30

References

  • [1]

    Abdaoui K., Ammar F. and Makhlouf A., Hom-alternative, Hom-Malcev and Hom-Jordan superalgebras, Comm. Algebra, to appear. Google Scholar

  • [2]

    Aizawa N. and Sato H., q-deformation of the Virasoro algebra with central extension, Phys. Lett. B 256 (1991), no. 2, 185–190. Google Scholar

  • [3]

    Alvarez-Gaumé L., Gomez C. and Sierra G., Quantum group interpretation of some conformal field theories, Phys. Lett. B 220 (1989), no. 1–2, 142–152. Google Scholar

  • [4]

    Ammar F., Ejbehi Z. and Makhlouf A., Cohomology and deformations of Hom-algebras, J. Lie Theory 21 (2011), no. 4, 813–836. Google Scholar

  • [5]

    Ammar F., Mabrouk S. and Makhlouf A., Representations and cohomology of n-ary multiplicative Hom-Nambu–Lie algebras, J. Geom. Phys. 61 (2011), no. 10, 1898–1913. Web of ScienceGoogle Scholar

  • [6]

    Ammar F. and Makhlouf A., Hom-Lie superalgebras and Hom-Lie admissible superalgebras, J. Algebra 324 (2010), 1513–1528. Web of ScienceGoogle Scholar

  • [7]

    Ammar F., Makhlouf A. and Saadaoui N., Cohomology of Hom-Lie superalgebras and q-deformed Witt superalgebra, Czechoslovak Math. J. 63 (2013), 721–761. Web of ScienceGoogle Scholar

  • [8]

    Ammar F., Makhlouf A. and Silvestrov S., Ternary q-Virasoro–Witt Hom-Nambu–Lie algebras, J. Phys. A 43 (2010), Artilce ID 265204. Google Scholar

  • [9]

    Benayadi S. and Makhlouf A., Hom-Lie algebras with symmetric invariant nondegenerate bilinear form, J. Geom. Phys. 76 (2014), 38–60. Google Scholar

  • [10]

    Bordemann M., Elchinger O. and Makhlouf A., Twisting Poisson algebras, coPoisson algebras and quantization, Trav. Math. 20 (2012), 83–120. Google Scholar

  • [11]

    Caenepeel S. and Goyvaerts I., Monoidal Hom-Hopf algebras, Comm. Algebra 39 (2011), no. 6, 2216–2240. Google Scholar

  • [12]

    Chaichian M., Ellinas D. and Popowicz Z., Quantum conformal algebra with central extension, Phys. Lett. B 248 (1990), no. 1–2, 95–99. Google Scholar

  • [13]

    Chaichian M., Isaev A., Lukierski J., Popowicz Z. and Prešnajder P., q-deformations of Virasoro algebra and conformal dimensions, Phys. Lett. B 262 (1991), no. 1, 32–38. Google Scholar

  • [14]

    Chaichian M., Kulish P. and Lukierski J., q-deformed Jacobi identity, q-oscillators and q-deformed infinite-dimensional algebras, Phys. Lett. B 237 (1990), no. 3–4, 401–406. Google Scholar

  • [15]

    Chaichian M., Popowicz Z. and Prešnajder P., q-Virasoro algebra and its relation to the q-deformed KdV system, Phys. Lett. B 249 (1990), no. 1, 63–65. Google Scholar

  • [16]

    Curtright T. and Zachos C., Deforming maps for quantum algebras, Phys. Lett. B 243 (1990), no. 3, 237–244. Google Scholar

  • [17]

    Damaskinsky E. V. and Kulish P. P., Deformed oscillators and their applications (in Russian), Zap. Nauchn. Sem. Leningr. Otdel. Mat. Inst. Steklov. 189 (1991), 37–74; translation in J. Sov. Math. 62 (1992), 2963–2986. Google Scholar

  • [18]

    Daskaloyannis C., Generalized deformed Virasoro algebras, Modern Phys. Lett. A 07 (1992), no. 9, 809–816. Google Scholar

  • [19]

    Elhamdadi M. and Makhlouf A., Hom-quasi-bialgebras, Hopf Algebras and Tensor Categories, Contemp. Math. 585, American Mathematical Society, Providence (2013), 227–245. Google Scholar

  • [20]

    Frégier Y., Gohr A. and Silvestrov S., Unital algebras of Hom-associative type and surjective or injective twistings, J. Gen. Lie Theory Appl. 3 (2009), no. 4, 285–295. Google Scholar

  • [21]

    Gohr A., On hom-algebras with surjective twisting, J. Algebra 324 (2010), no. 7, 1483–1491. Web of ScienceGoogle Scholar

  • [22]

    Hartwig J. T., Generalized derivations on algebras and highest weight representations of the Virasoro algebra, Master thesis, Lund University, 2002, https://sites.google.com/site/jonashartwig/xjobb1.pdf?attredirects=0.

  • [23]

    Hartwig J. T., Larsson D. and Silvestrov S. D., Deformations of Lie algebras using σ-derivations, J. Algebra 295 (2006), no. 2, 314–361. Google Scholar

  • [24]

    Hu N., q-Witt algebras, q-Virasoro algebra, q-Lie algebras, q-holomorph structure and representations, Algebra Colloq. 6 (1999), 51–70. Google Scholar

  • [25]

    Kassel C., Cyclic homology of differential operators, the virasoro algebra and a q-analogue, Comm. Math. Phys. 146 (1992), no. 2, 343–356. Google Scholar

  • [26]

    Larsson D. and Silvestrov S. D., Quasi-Hom-Lie algebras, central extensions and 2-cocycle-like identities, J. Algebra 288 (2005), 321–344. Google Scholar

  • [27]

    Larsson D. and Silvestrov S. D., Quasi-Lie algebras, Noncommutative Geometry and Representation Theory in Mathematical Physics, Contemp. Math. 391, American Mathematical Society, Providence (2005), 241–248. Google Scholar

  • [28]

    Larsson D. and Silvestrov S. D., Quasi-Deformations of 𝔰𝔩2(𝔽) using twisted derivations, Comm. Algebra 35 (2007), 4303–4318. Web of ScienceGoogle Scholar

  • [29]

    Liu K.-Q., Characterizations of the quantum Witt algebra, Lett. Math. Phys. 24 (1992), no. 4, 257–265. Google Scholar

  • [30]

    Makhlouf A., Paradigm of nonassociative Hom-algebras and Hom-superalgebras, Proceedings of Jordan Structures in Algebra and Analysis Meeting (Almería 2009), Universidad de Almería, Almería (2010), 143–177. Google Scholar

  • [31]

    Makhlouf A. and Panaite F., Yetter–Drinfeld modules for Hom-bialgebras, J. Math. Phys. 55 (2014), no. 1, Article ID 013501. Google Scholar

  • [32]

    Makhlouf A. and Silvestrov S. D., Hom-algebra structures, J. Gen. Lie Theory Appl. 2 (2008), no. 2, 51–64. Google Scholar

  • [33]

    Makhlouf A. and Silvestrov S. D., Hom-algebras and Hom-coalgebras, J. Algebra Appl. 9 (2010), no. 4, 553–589. Web of ScienceGoogle Scholar

  • [34]

    Makhlouf A. and Silvestrov S. D., Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras, Generalized Lie Theory in Mathematics, Physics and Beyond, Springer, Berlin (2010), 189–206. Google Scholar

  • [35]

    Makhlouf A. and Silvestrov S. D., Notes on Formal deformations of Hom-associative and Hom-Lie algebras, Forum Math. 22 (2010), no. 4, 715–739. Google Scholar

  • [36]

    Makhlouf A. and Yau D., Rota–Baxter Hom-Lie-admissible algebras, Comm. Algebra 42 (2014), 1231–1257. Google Scholar

  • [37]

    Sheng Y., Representations of Hom-Lie algebras, Algebr. Represent. Theory 15 (2012), no. 6, 1081–1098. Google Scholar

  • [38]

    Yau D., Hom-algebras and homology, J. Lie Theory 19 (2009), no. 2, 409–421. Google Scholar

  • [39]

    Yau D., The Hom-Yang–Baxter equation, Hom-Lie algebras and quasitriangular bialgebras, J. Phys. A 42 (2009), no. 16, Article ID 165202. Google Scholar

  • [40]

    Yau D., Hom-bialgebras and comodule Hom-algebras, Int. Electron. J. Algebra 8 (2010), 45–64. Google Scholar

  • [41]

    Yau D., Non-commutative Hom-Poisson algebras, preprint 2010, http://arxiv.org/abs/1010.3408.

  • [42]

    Yau D., The Hom-Yang–Baxter equation and Hom-Lie algebras, J. Math. Phys. 52 (2011), Article ID 053502. Web of ScienceGoogle Scholar

About the article

Received: 2014-07-21

Revised: 2015-01-18

Published Online: 2015-07-14

Published in Print: 2016-07-01


Citation Information: Forum Mathematicum, Volume 28, Issue 4, Pages 657–673, ISSN (Online) 1435-5337, ISSN (Print) 0933-7741, DOI: https://doi.org/10.1515/forum-2014-0132.

Export Citation

© 2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Liqiang Cai and Yunhe Sheng
Science China Mathematics, 2018

Comments (0)

Please log in or register to comment.
Log in