Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Forum Mathematicum

Managing Editor: Bruinier, Jan Hendrik

Ed. by Blomer, Valentin / Cohen, Frederick R. / Droste, Manfred / Duzaar, Frank / Echterhoff, Siegfried / Frahm, Jan / Gordina, Maria / Shahidi, Freydoon / Sogge, Christopher D. / Takayama, Shigeharu / Wienhard, Anna


IMPACT FACTOR 2018: 0.867

CiteScore 2018: 0.71

SCImago Journal Rank (SJR) 2018: 0.898
Source Normalized Impact per Paper (SNIP) 2018: 0.964

Mathematical Citation Quotient (MCQ) 2018: 0.71

Online
ISSN
1435-5337
See all formats and pricing
More options …
Volume 28, Issue 5

Issues

Maximal function characterizations of Hardy spaces associated to homogeneous higher order elliptic operators

Jun Cao
  • School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, P. R. China. Current address: Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Svitlana Mayboroda / Dachun Yang
  • Corresponding author
  • School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-10-01 | DOI: https://doi.org/10.1515/forum-2014-0127

Abstract

Let L be a homogeneous divergence form higher order elliptic operator with complex bounded measurable coefficients and (p-(L),p+(L)) be the maximal interval of exponents q[1,] such that the semigroup {e-tL}t>0 is bounded on Lq(n). In this article, the authors establish the non-tangential maximal function characterizations of the associated Hardy spaces HLp(n) for all p(0,p+(L)), which when p=1, answers a question asked by Deng, Ding and Yao in [21]. Moreover, the authors characterize HLp(n) via various versions of square functions and Lusin-area functions associated to the operator L.

Keywords: Higher order elliptic operator; off-diagonal estimate; Hardy space; maximal function; square function; molecule; Riesz transform

MSC 2010: 42B30; 42B20; 42B35; 42B37; 46E30; 35J48; 47B06; 47B38

References

  • [1]

    Adams R. A. and Fournier J. J. F., Sobolev Spaces, 2nd ed., Pure Appl. Math. (Amst.) 140, Academic Press, Amsterdam, 2003. Google Scholar

  • [2]

    Auscher P., On necessary and sufficient conditions for Lp-estimates of Riesz transforms associated to elliptic operators on n and related estimates, Mem. Amer. Math. Soc. 186 (2007), no. 871, 10.1090/memo/0871. Google Scholar

  • [3]

    Auscher P., Change of angle in tent spaces, C. R. Math. Acad. Sci. Paris 349 (2011), 297–301. Google Scholar

  • [4]

    Auscher P., Hofmann S., McIntosh A. and Tchamitchian P., The Kato square root problem for higher order elliptic operators and systems on n, J. Evol. Equ. 1 (2001), 361–385. Google Scholar

  • [5]

    Auscher P. and Qafsaoui M., Equivalence between regularity theorems and heat kernel estimates for higher order elliptic operators and systems under divergence form, J. Funct. Anal. 177 (2000), 310–364. Google Scholar

  • [6]

    Auscher P. and Tchamitchian P., Square Root Problem for Divergence Operators and Related Topics, Société Mathématique de France, Paris, 1988. Google Scholar

  • [7]

    Barton A., Gradient estimates and the fundamental solution for higher-order elliptic systems with rough coefficients, preprint 2014, http://arxiv.org/abs/1409.7600.

  • [8]

    Blunck S. and Kunstmann P. C., Calderón–Zygmund theory for non-integral operators and the H functional calculus, Rev. Mat. Iberoam. 19 (2003), 919–942. Google Scholar

  • [9]

    Blunck S. and Kunstmann P. C., Weak type (p,p) estimates for Riesz transforms, Math. Z. 247 (2004), 137–148. Google Scholar

  • [10]

    Bui T. A., Cao J., Ky L. D., Yang D. and Yang S., Musielak–Orlicz–Hardy spaces associated with operators satisfying reinforced off-diagonal estimates, Anal. Geom. Metr. Spaces 1 (2013), 69–129. Google Scholar

  • [11]

    Burkholder D. L., Gundy R. F. and Silverstein M. L., A maximal function characterization of the class Hp, Trans. Amer. Math. Soc. 157 (1971), 137–153. Google Scholar

  • [12]

    Cao J., Chang D.-C., Yang D. and Yang S., Boundedness of generalized Riesz transforms on Orlicz–Hardy spaces associated to operators, Integral Equations Operator Theory 76 (2013), 225–283. Google Scholar

  • [13]

    Cao J., Chang D.-C., Yang D. and Yang S., Weighted local Orlicz–Hardy spaces on domains and their applications in inhomogeneous Dirichlet and Neumann problems, Trans. Amer. Math. Soc. 365 (2013), 4729–4809. Google Scholar

  • [14]

    Cao J., Mayboroda S. and Yang D., Local Hardy spaces associated with inhomogeneous higher order elliptic operators, Anal. Appl. (Singap.) 2015 (2015), 10.1142/S0219530515500189. Google Scholar

  • [15]

    Cao J. and Yang D., Hardy spaces HLp(n) associated to operators satisfying k-Davies–Gaffney estimates, Sci. China Math. 55 (2012), 1403–1440. Google Scholar

  • [16]

    Chang D.-C., Dafni G. and Stein E. M., Hardy spaces, BMO and boundary value problems for the Laplacian on a smooth domain in n, Trans. Amer. Math. Soc. 351 (1999), 1605–1661. Google Scholar

  • [17]

    Chang D.-C., Krantz S. G. and Stein E. M., Hardy spaces and elliptic boundary value problems, The Madison Symposium on Complex Analysis (Madison 1991), Contemp. Math. 137, American Mathematical Society, Providence (1992), 119–131. Google Scholar

  • [18]

    Chang D.-C., Krantz S. G. and Stein E. M., Hp theory on a smooth domain in N and elliptic boundary value problems, J. Funct. Anal. 114 (1993), 286–347. Google Scholar

  • [19]

    Coifman R. R., Lions P.-L., Meyer Y. and Semmes S., Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9) 72 (1993), 247–286. Google Scholar

  • [20]

    Coifman R. R., Meyer Y. and Stein E. M., Some new function spaces and their applications to harmonic analysis, J. Funct. Anal. 62 (1985), 304–335. Google Scholar

  • [21]

    Deng Q., Ding Y. and Yao X., Characterizations of Hardy spaces associated to higher order elliptic operators, J. Funct. Anal. 263 (2012), 604–674. Google Scholar

  • [22]

    Duong X. T., Hofmann S., Mitrea D., Mitrea M. and Yan L., Hardy spaces and regularity for the inhomogeneous Dirichlet and Neumann problems, Rev. Mat. Iberoam. 29 (2013), 183–236. Google Scholar

  • [23]

    Duong X. T. and Li J., Hardy spaces associated to operators satisfying Davies–Gaffney estimates and bounded holomorphic functional calculus, J. Funct. Anal. 264 (2013), 1409–1437. Google Scholar

  • [24]

    Duong X. T., Xiao J. and Yan L., Old and new Morrey spaces with heat kernel bounds, J. Fourier Anal. Appl. 13 (2007), 87–111. Google Scholar

  • [25]

    Duong X. T. and Yan L., New function spaces of BMO type, the John–Nirenberg inequality, interpolation, and applications, Comm. Pure Appl. Math. 58 (2005), 1375–1420. Google Scholar

  • [26]

    Fefferman C. and Stein E. M., Hp spaces of several variables, Acta Math. 129 (1972), 137–193. Google Scholar

  • [27]

    Haase M., The Functional Calculus for Sectorial Operators, Oper. Theory Adv. Appl. 169, Birkhäuser, Basel, 2006. Google Scholar

  • [28]

    Hofmann S. and Mayboroda S., Hardy and BMO spaces associated to divergence form elliptic operators, Math. Ann. 344 (2009), 37–116. Google Scholar

  • [29]

    Hofmann S., Mayboroda S. and McIntosh A., Second order elliptic operators with complex bounded measurable coefficients in Lp, Sobolev and Hardy spaces, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), 723–800. Google Scholar

  • [30]

    Janson S., On the interpolation of sublinear operators, Studia Math. 75 (1982), 51–53. Google Scholar

  • [31]

    Jiang R. and Yang D., New Orlicz–Hardy spaces associated with divergence form elliptic operators, J. Funct. Anal. 258 (2010), 1167–1224. Google Scholar

  • [32]

    Jiang R. and Yang D., Orlicz–Hardy spaces associated with operators satisfying Davies–Gaffney estimates, Commun. Contemp. Math. 13 (2011), 331–373. Google Scholar

  • [33]

    Kalton N., Mayboroda S. and Mitrea M., Interpolation of Hardy–Sobolev–Besov–Triebel–Lizorkin spaces and applications to problems in partial differential equations, Interpolation Theory and Applications, Contemp. Math. 445, American Mathematical Society, Providence (2007), 121–177. Google Scholar

  • [34]

    Mayboroda S. and Mitrea M., Sharp estimates for Green potentials on non-smooth domains, Math. Res. Lett. 11 (2004), 481–492. Google Scholar

  • [35]

    Morrey, Jr. C. B., Multiple Integrals in the Calculus of Variations, Classics Math., Springer, Berlin, 2008. Google Scholar

  • [36]

    Ouhabaz E. M., Analysis the of Heat Equations on Domains, Princeton University Press, Princeton, 2005. Google Scholar

About the article


Received: 2014-07-15

Revised: 2015-04-21

Published Online: 2015-10-01

Published in Print: 2016-09-01


Funding Source: National Science Foundation

Award identifier / Grant number: DMS 1220089

Award identifier / Grant number: DMS 1344235

Award identifier / Grant number: DMR 0212302

Funding Source: National Natural Science Foundation of China

Award identifier / Grant number: 11501506

Award identifier / Grant number: 11571039

Award identifier / Grant number: 11361020

J. Cao is supported by the National Natural Science Foundation of China (grant no. 11501506) and the Natural Science Foundation of Zhejiang University of Technology (grant no. 2014XZ011). S. Mayboroda was partially supported by the NSF grants DMS 1220089 (CAREER), DMS 1344235 (INSPIRE), DMR 0212302 (UMN MRSEC Seed grant) and the Alfred P. Sloan Fellowship. D. Yang is supported by the National Natural Science Foundation of China (grant no. 11571039 and 11361020), the Specialized Research Fund for the Doctoral Program of Higher Education of China (grant no. 20120003110003) and the Fundamental Research Funds for the Central Universities of China (grant no. 2013YB60 and 2014KJJCA10).


Citation Information: Forum Mathematicum, Volume 28, Issue 5, Pages 823–856, ISSN (Online) 1435-5337, ISSN (Print) 0933-7741, DOI: https://doi.org/10.1515/forum-2014-0127.

Export Citation

© 2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
[2]
Sibei Yang and Dachun Yang
Communications on Pure and Applied Analysis, 2016, Volume 15, Number 6, Page 2135

Comments (0)

Please log in or register to comment.
Log in