[1]

Adams R. A. and Fournier J. J. F.,
Sobolev Spaces, 2nd ed.,
Pure Appl. Math. (Amst.) 140,
Academic Press, Amsterdam, 2003.
Google Scholar

[2]

Auscher P.,
On necessary and sufficient conditions for ${L}^{p}$-estimates of Riesz transforms associated to elliptic operators on ${\mathbb{R}}^{n}$ and related estimates,
Mem. Amer. Math. Soc. 186 (2007), no. 871, 10.1090/memo/0871.
Google Scholar

[3]

Auscher P.,
Change of angle in tent spaces,
C. R. Math. Acad. Sci. Paris 349 (2011), 297–301.
Google Scholar

[4]

Auscher P., Hofmann S., McIntosh A. and Tchamitchian P.,
The Kato square root problem for higher order elliptic operators and systems on ${\mathbb{R}}^{n}$,
J. Evol. Equ. 1 (2001), 361–385.
Google Scholar

[5]

Auscher P. and Qafsaoui M.,
Equivalence between regularity theorems and heat kernel estimates for higher order elliptic operators and systems under divergence form,
J. Funct. Anal. 177 (2000), 310–364.
Google Scholar

[6]

Auscher P. and Tchamitchian P.,
Square Root Problem for Divergence Operators and Related Topics,
Société Mathématique de France, Paris, 1988.
Google Scholar

[7]

Barton A.,
Gradient estimates and the fundamental solution for higher-order elliptic systems with rough coefficients,
preprint 2014, http://arxiv.org/abs/1409.7600.

[8]

Blunck S. and Kunstmann P. C.,
Calderón–Zygmund theory for non-integral operators and the ${H}^{\mathrm{\infty}}$ functional calculus,
Rev. Mat. Iberoam. 19 (2003), 919–942.
Google Scholar

[9]

Blunck S. and Kunstmann P. C.,
Weak type $(p,p)$ estimates for Riesz transforms,
Math. Z. 247 (2004), 137–148.
Google Scholar

[10]

Bui T. A., Cao J., Ky L. D., Yang D. and Yang S.,
Musielak–Orlicz–Hardy spaces associated with operators satisfying reinforced off-diagonal estimates,
Anal. Geom. Metr. Spaces 1 (2013), 69–129.
Google Scholar

[11]

Burkholder D. L., Gundy R. F. and Silverstein M. L.,
A maximal function characterization of the class ${H}^{p}$,
Trans. Amer. Math. Soc. 157 (1971), 137–153.
Google Scholar

[12]

Cao J., Chang D.-C., Yang D. and Yang S.,
Boundedness of generalized Riesz transforms on Orlicz–Hardy spaces associated to operators,
Integral Equations Operator Theory 76 (2013), 225–283.
Google Scholar

[13]

Cao J., Chang D.-C., Yang D. and Yang S.,
Weighted local Orlicz–Hardy spaces on domains and their applications in inhomogeneous Dirichlet and Neumann problems,
Trans. Amer. Math. Soc. 365 (2013), 4729–4809.
Google Scholar

[14]

Cao J., Mayboroda S. and Yang D.,
Local Hardy spaces associated with inhomogeneous higher order elliptic operators,
Anal. Appl. (Singap.) 2015 (2015), 10.1142/S0219530515500189.
Google Scholar

[15]

Cao J. and Yang D.,
Hardy spaces ${H}_{L}^{p}({\mathbb{R}}^{n})$ associated to operators satisfying *k*-Davies–Gaffney estimates,
Sci. China Math. 55 (2012), 1403–1440.
Google Scholar

[16]

Chang D.-C., Dafni G. and Stein E. M.,
Hardy spaces, $\mathrm{BMO}$ and boundary value problems for the Laplacian on a smooth domain in ${\mathbb{R}}^{n}$,
Trans. Amer. Math. Soc. 351 (1999), 1605–1661.
Google Scholar

[17]

Chang D.-C., Krantz S. G. and Stein E. M.,
Hardy spaces and elliptic boundary value problems,
The Madison Symposium on Complex Analysis (Madison 1991),
Contemp. Math. 137,
American Mathematical Society, Providence (1992), 119–131.
Google Scholar

[18]

Chang D.-C., Krantz S. G. and Stein E. M.,
${H}^{p}$ theory on a smooth domain in ${\mathbb{R}}^{N}$ and elliptic boundary value problems,
J. Funct. Anal. 114 (1993), 286–347.
Google Scholar

[19]

Coifman R. R., Lions P.-L., Meyer Y. and Semmes S.,
Compensated compactness and Hardy spaces,
J. Math. Pures Appl. (9) 72 (1993), 247–286.
Google Scholar

[20]

Coifman R. R., Meyer Y. and Stein E. M.,
Some new function spaces and their applications to harmonic analysis,
J. Funct. Anal. 62 (1985), 304–335.
Google Scholar

[21]

Deng Q., Ding Y. and Yao X.,
Characterizations of Hardy spaces associated to higher order elliptic operators,
J. Funct. Anal. 263 (2012), 604–674.
Google Scholar

[22]

Duong X. T., Hofmann S., Mitrea D., Mitrea M. and Yan L.,
Hardy spaces and regularity for the inhomogeneous Dirichlet and Neumann problems,
Rev. Mat. Iberoam. 29 (2013), 183–236.
Google Scholar

[23]

Duong X. T. and Li J.,
Hardy spaces associated to operators satisfying Davies–Gaffney estimates and bounded holomorphic functional calculus,
J. Funct. Anal. 264 (2013), 1409–1437.
Google Scholar

[24]

Duong X. T., Xiao J. and Yan L.,
Old and new Morrey spaces with heat kernel bounds,
J. Fourier Anal. Appl. 13 (2007), 87–111.
Google Scholar

[25]

Duong X. T. and Yan L.,
New function spaces of $\mathrm{BMO}$ type, the John–Nirenberg inequality, interpolation, and applications,
Comm. Pure Appl. Math. 58 (2005), 1375–1420.
Google Scholar

[26]

Fefferman C. and Stein E. M.,
${H}^{p}$ spaces of several variables,
Acta Math. 129 (1972), 137–193.
Google Scholar

[27]

Haase M.,
The Functional Calculus for Sectorial Operators,
Oper. Theory Adv. Appl. 169,
Birkhäuser, Basel, 2006.
Google Scholar

[28]

Hofmann S. and Mayboroda S.,
Hardy and $\mathrm{BMO}$ spaces associated to divergence form elliptic operators,
Math. Ann. 344 (2009), 37–116.
Google Scholar

[29]

Hofmann S., Mayboroda S. and McIntosh A.,
Second order elliptic operators with complex bounded measurable coefficients in ${L}^{p}$, Sobolev and Hardy spaces,
Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), 723–800.
Google Scholar

[30]

Janson S.,
On the interpolation of sublinear operators,
Studia Math. 75 (1982), 51–53.
Google Scholar

[31]

Jiang R. and Yang D.,
New Orlicz–Hardy spaces associated with divergence form elliptic operators,
J. Funct. Anal. 258 (2010), 1167–1224.
Google Scholar

[32]

Jiang R. and Yang D.,
Orlicz–Hardy spaces associated with operators satisfying Davies–Gaffney estimates,
Commun. Contemp. Math. 13 (2011), 331–373.
Google Scholar

[33]

Kalton N., Mayboroda S. and Mitrea M.,
Interpolation of Hardy–Sobolev–Besov–Triebel–Lizorkin spaces and applications to problems in partial differential equations,
Interpolation Theory and Applications,
Contemp. Math. 445,
American Mathematical Society, Providence (2007), 121–177.
Google Scholar

[34]

Mayboroda S. and Mitrea M.,
Sharp estimates for Green potentials on non-smooth domains,
Math. Res. Lett. 11 (2004), 481–492.
Google Scholar

[35]

Morrey, Jr. C. B.,
Multiple Integrals in the Calculus of Variations,
Classics Math.,
Springer, Berlin, 2008.
Google Scholar

[36]

Ouhabaz E. M.,
Analysis the of Heat Equations on Domains,
Princeton University Press, Princeton, 2005.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.