Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Forum Mathematicum

Managing Editor: Bruinier, Jan Hendrik

Ed. by Blomer, Valentin / Cohen, Frederick R. / Droste, Manfred / Duzaar, Frank / Echterhoff, Siegfried / Frahm, Jan / Gordina, Maria / Shahidi, Freydoon / Sogge, Christopher D. / Takayama, Shigeharu / Wienhard, Anna


IMPACT FACTOR 2018: 0.867

CiteScore 2018: 0.71

SCImago Journal Rank (SJR) 2018: 0.898
Source Normalized Impact per Paper (SNIP) 2018: 0.964

Mathematical Citation Quotient (MCQ) 2018: 0.71

Online
ISSN
1435-5337
See all formats and pricing
More options …
Volume 28, Issue 5

Issues

On the K-theory of certain extensions of free groups

Vassilis Metaftsis / Stratos Prassidis
Published Online: 2015-09-24 | DOI: https://doi.org/10.1515/forum-2014-0214

Abstract

Since Hol(Fn) embeds into Aut(Fn+1), one can construct inductively the subgroups (n) of Aut(Fn+1) by setting (1)=Hol(F2) and (n)=Fn+1(n-1). We show that the FJCw holds for (n). Moreover, we calculate the lower K-theory for the groups (n).

Keywords: Isomorphism conjecture; free group automorphisms; holomorph

MSC 2010: 19D35; 20F65

References

  • [1]

    Bartels A. C., On the domain of the assembly map in algebraic K-theory, Algebr. Geom. Topol. 3 (2003), 1037–1050. Google Scholar

  • [2]

    Bartels A. and Lück W., The Borel conjecture for hyperbolic and CAT(0)-groups, Ann. of Math. (2) 175 (2012), no. 2, 631–689. Google Scholar

  • [3]

    Bartels A., Lück W. and Reich H., The K-theoretic Farrell–Jones conjecture for hyperbolic groups, Invent. Math. 172 (2008), no. 1, 29–70. Google Scholar

  • [4]

    Bartels A. and Reich H., Coefficients for the Farrell–Jones conjecture, Adv. Math. 209 (2007), no. 1, 337–362. Google Scholar

  • [5]

    Brady T., Complexes of nonpositive curvature for extensions of F2 by , Topology Appl. 63 (1995), no. 3, 267–275. Google Scholar

  • [6]

    Bridson M. and Haefliger A., Metric Spaces of Non-Positive Curvature, Grundlehren Math. Wiss. 319, Springer, Berlin, 1999. Google Scholar

  • [7]

    Davis J. F., Quinn F. and Reich H., Algebraic K-theory over the infinite dihedral group: A controlled topology approach, J. Topol. 4 (2001), no. 3, 505–528. Google Scholar

  • [8]

    Davis M. W. and Januszkiewicz T., Right-angled Artin groups are commensurable with right-angled Coxeter groups, J. Pure Appl. Algebra 153 (2000), no. 3, 229–235. Google Scholar

  • [9]

    Farrell F. T. and Wu X., Isomorphism conjecture for Baumslag–Solitar groups, Proc. Amer. Math. Soc. 143 (2015), no. 8, 3401–3406. Google Scholar

  • [10]

    Formanek E. and Procesi C., The automorphism group of a free group is not linear, J. Algebra 149 (1992), no. 2, 494–499. Google Scholar

  • [11]

    Lück W. and Weiermann M., On the classifying space of the family of virtually cyclic subgroups, Pure Appl. Math. Q. 8 (2012), no. 2, 497–555. Google Scholar

  • [12]

    Magnus W., Karrass A. and Solitar D., Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, Interscience, New York, 1966. Google Scholar

  • [13]

    Meskin S., Periodic automorphisms of the two-generator free group, Proceedings of the Second International Conference on the Theory of Groups (Canberra 1973), Lecture Notes in Math. 372, Springer, Berlin (1974), 494–498. Google Scholar

  • [14]

    Metaftsis V. and Prassidis S., On the vanishing of the lower K-theory of the holomorph of a free group on two generators, Forum Math. 24 (2012), no. 4, 861–874. Google Scholar

  • [15]

    Moussong G., Hyperbolic Coxeter groups, Ph.D thesis, The Ohio State University, 1988. Google Scholar

  • [16]

    Roushon S. K., Algebraic K-theory of groups wreath product with finite groups, Topology Appl. 154 (2007), no. 9, 1921–1930. Google Scholar

  • [17]

    Samuelson P., On CAT(0) structures for free-by-cyclic groups, Topology Appl. 153 (2006), no. 15, 2823–2833. Google Scholar

  • [18]

    Wegner C., The K-theoretic Farrell–Jones conjecture for CAT(0)-groups, Proc. Amer. Math. Soc. 140 (2012), no. 3, 779–793. Google Scholar

  • [19]

    Wegner C., The Farrell–Jones conjecture for virtually solvable groups, preprint 2013, http://arxiv.org/abs/1308.2432. Google Scholar

  • [20]

    Weibel C., NK0 and NK1 of the groups C4 and D4, Comment. Math. Helv. 84 (2009), no. 2, 339–349. Google Scholar

About the article


Received: 2014-12-11

Revised: 2015-07-04

Published Online: 2015-09-24

Published in Print: 2016-09-01


Funding Source: European Social Fund

Award identifier / Grant number: THALIS

Research supported by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) – Research Funding Program: THALIS.


Citation Information: Forum Mathematicum, Volume 28, Issue 5, Pages 813–822, ISSN (Online) 1435-5337, ISSN (Print) 0933-7741, DOI: https://doi.org/10.1515/forum-2014-0214.

Export Citation

© 2016 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in