[1]

Borcherds R. E.,
Automorphic forms with singularities on Grassmannians,
Invent. Math. 132 (1998), no. 3, 491–562.
Google Scholar

[2]

Bruinier J. H.,
Borcherds Products on O(2, *l*) and Chern Classes of Heegner Divisors,
Lecture Notes in Math. 1780,
Springer, Berlin, 2002.
Google Scholar

[3]

Bruinier J. H.,
Hilbert modular forms and their applications,
The 1-2-3 of Modular Forms,
Universitext,
Springer, Berlin (2008), 105–179.
Google Scholar

[4]

Bruinier J. H. and Bundschuh M.,
On Borcherds products associated with lattices of prime discriminant,
Ramanujan J. 7 (2003), no. 1–3, 49–61.
Google Scholar

[5]

Bruinier J. H. and Yang T.,
Faltings heights of CM cycles and derivatives of *L*-functions,
Invent. Math. 177 (2009), no. 3, 631–681.
Google Scholar

[6]

Bundschuh M.,
Ü,ber die Endlichkeit der Klassenzahl gerader Gitter der Signatur $(2,n)$ mit einfachem Kontrollraum,
Ph.D. thesis, Universität Heidelberg, 2001.
Google Scholar

[7]

Duke W. and Li Y.,
Harmonic maass forms of weight 1,
Duke Math. J. 164 (2015), no. 1, 39–113.
Google Scholar

[8]

Ehlen S.,
CM, values of regularized theta lifts,
Ph.D. thesis, TU Darmstadt, 2013.
Google Scholar

[9]

Hofmann E. F. W.,
Automorphic products on unitary groups,
Ph.D. thesis, TU Darmstadt, 2011.
Google Scholar

[10]

Kani E.,
The space of binary theta series,
Ann. Sci. Math. Québec 36 (2012), no. 2, 501–534.
Google Scholar

[11]

Kitaoka Y.,
Arithmetic of Quadratic Forms,
Cambridge Tracts in Math. 106,
Cambridge University Press, Cambridge, 1993.
Google Scholar

[12]

Kneser M.,
Quadratische Formen,
Springer, Berlin, 2002.
Google Scholar

[13]

Kudla S. S.,
Integrals of Borcherds forms,
Compos. Math. 137 (2003), no. 3, 293–349.
Google Scholar

[14]

Neukirch J.,
Algebraische Zahlentheorie,
Springer, Berlin, 2007.
Google Scholar

[15]

Scheithauer N.,
The Weil representation of ${\mathrm{SL}}_{2}(\mathbb{Z})$ and some applications,
Int. Math. Res. Not. IMRN 8 (2009), 1488–1545.
Google Scholar

[16]

Scheithauer N.,
Some constructions of modular forms for the Weil representation of ${\mathrm{SL}}_{2}(\mathbb{Z})$,
preprint 2011, http://www.mathematik.tu-darmstadt.de/~scheithauer/papers/modularforms2.pdf.

[17]

Schwagenscheidt M. and Völz F.,
Lifting newforms to vector valued modular forms for the Weil representation,
Int. J. Number Theory 11 (2015), no. 7, 2199–2219.
Google Scholar

[18]

Shimura G.,
Introduction to the Arithmetic Theory of Automorphic Functions,
Princeton University Press, Princeton, 1994.
Google Scholar

[19]

Strömberg F.,
Weil representations associated with finite quadratic modules,
Math. Z. 275 (2013), no. 1–2, 509–527.
Google Scholar

[20]

Zagier D. B.,
Zetafunktionen und Quadratische Körper,
Hochschultext,
Springer, Berlin, 1981.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.