Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Forum Mathematicum

Managing Editor: Bruinier, Jan Hendrik

Ed. by Blomer, Valentin / Cohen, Frederick R. / Droste, Manfred / Duzaar, Frank / Echterhoff, Siegfried / Frahm, Jan / Gordina, Maria / Shahidi, Freydoon / Sogge, Christopher D. / Takayama, Shigeharu / Wienhard, Anna


IMPACT FACTOR 2018: 0.867

CiteScore 2018: 0.71

SCImago Journal Rank (SJR) 2018: 0.898
Source Normalized Impact per Paper (SNIP) 2018: 0.964

Mathematical Citation Quotient (MCQ) 2018: 0.71

Online
ISSN
1435-5337
See all formats and pricing
More options …
Volume 28, Issue 5

Issues

Symplectic Lefschetz fibrations on adjoint orbits

Elizabeth Gasparim / Lino Grama
  • Imecc – Unicamp, Departamento de Matemática, Rua Sérgio Buarque de Holanda, 651, Cidade Universitária Zeferino Vaz. 13083-859 Campinas - SP, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luiz A. B. San Martin
  • Imecc – Unicamp, Departamento de Matemática, Rua Sérgio Buarque de Holanda, 651, Cidade Universitária Zeferino Vaz. 13083-859 Campinas - SP, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-11-28 | DOI: https://doi.org/10.1515/forum-2015-0039

Abstract

We prove that adjoint orbits of semisimple Lie algebras have the structure of symplectic Lefschetz fibrations. We describe the topology of the regular and singular fibres, in particular we calculate their middle Betti numbers.

Keywords: Lefschetz fibrations; Morse-type singularities; symplectic manifolds

MSC 2010: 32S50; 32L05; 53D99

References

  • [1]

    Amorós J., Bogomolov F., Katzarkov L. and Pantev T., Symplectic Lefschetz fibrations with arbitrary fundamental groups, J. Differential Geom. 54 (2000), no. 3, 489–545. Google Scholar

  • [2]

    Atiyah M., Convexity and commuting hamiltonians, Bull. Lond. Math. Soc. 14 (1982), 1–15. Google Scholar

  • [3]

    Azad H., van den Ban E. and Biswas I., Symplectic geometry of semisimple orbits, Indag. Math. (N.S.) 19 (2008), no. 4, 507–533. Google Scholar

  • [4]

    Donaldson S. K., Lefschetz fibrations in symplectic geometry, Doc. Math. J. DMV Extra Vol. ICM Berlin 1998 2 (1998), 309–314. Google Scholar

  • [5]

    Duistermaat J. J., Kolk J. A. C. and Varadarajan V. S., Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes in real semisimple Lie groups, Compos. Math. 49 (1983), 309–398. Google Scholar

  • [6]

    Gasparim E., Grama L. and San Martin L. A. B., Adjoint orbits of semisimple Lie groups and Lagrangian submanifolds, preprint 2014, http://arxiv.org/abs/1401.2418.

  • [7]

    Gompf R. E., Symplectic structures from Lefschetz pencils in high dimensions, Proceedings of the Casson Fest, Geom. Topol. Monogr. 7, Geometry and Topology Publications, Coventry (2004), 267–290. Google Scholar

  • [8]

    Gompf R. E. and Stipsicz A., An Introduction to 4-Manifolds and Kirby Calculus, Grad. Stud. Math. 20, American Mathematical Society, Providence, 1999. Google Scholar

  • [9]

    Guillemin V. and Sternberg S., Convexity properties of the moment mapping, Invent. Math. 67 (1982), 491–513. Google Scholar

  • [10]

    Kocherlakota R. R., Integral homology of real flag manifolds and loop spaces of symmetric spaces, Adv. Math. 110 (1995), 1–46. Google Scholar

  • [11]

    Kostant B., On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. Éc. Norm. Supér. (4) 6 (1973), 413–455. Google Scholar

  • [12]

    San Martin L. A. B., Álgebras de Lie, 2nd ed., Editora Unicamp, Campinas, 2010. Google Scholar

  • [13]

    Seidel P., Vanishing cycles and mutations, European Congress of Mathematics. Vol. II (Barcelona 2000), Progr. Math. 202, Birkhäuser, Basel (2001), 65–85. Google Scholar

About the article


Received: 2015-02-25

Published Online: 2015-11-28

Published in Print: 2016-09-01


Funding Source: Fundação de Amparo à Pesquisa do Estado de São Paulo

Award identifier / Grant number: 2012/10179-5

Award identifier / Grant number: 2014/17337-0

Award identifier / Grant number: 2012/18780-0

Funding Source: Conselho Nacional de Desenvolvimento Científico e Tecnológico

Award identifier / Grant number: 303755/2009-1

The authors acknowledge support of Fapesp grants 2012/10179-5, 2014/17337-0, 2012/18780-0 and CNPq grant 303755/2009-1.


Citation Information: Forum Mathematicum, Volume 28, Issue 5, Pages 967–979, ISSN (Online) 1435-5337, ISSN (Print) 0933-7741, DOI: https://doi.org/10.1515/forum-2015-0039.

Export Citation

© 2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Severin Barmeier and Elizabeth Gasparim
Journal of Pure and Applied Algebra, 2018
[2]
E. Ballico, S. Barmeier, E. Gasparim, L. Grama, and L. A. B. San Martin
manuscripta mathematica, 2018
[4]
E. Ballico, B. Callander, and E. Gasparim
Journal of Algebra and Its Applications, 2017, Page 1850099
[5]
E. Ballico, E. Gasparim, L. Grama, and L.A.B. San Martin
Indagationes Mathematicae, 2017, Volume 28, Number 3, Page 615

Comments (0)

Please log in or register to comment.
Log in