[1]

Anderson G. W.,
A short proof of Selberg’s generalized beta formula,
Forum. Math. 3 (1991), no. 4, 415–417.
Google Scholar

[2]

Bornemann F.,
On the numerical evaluation of distributions in random matrix theory: A review,
Markov Process. Related Fields 16 (2010), no. 4, 803–866.
Google Scholar

[3]

Bornemann F. and La Croix M.,
The singular values of the GOE,
preprint 2015, http://arxiv.org/abs/1502.05946.

[4]

de Bruijn N. G.,
On some multiple integrals involving determinants,
J. Indian Math. Soc. (N.S.) 19 (1955), 133–151.
Google Scholar

[5]

Dixon A. L.,
Generalisations of Legendre’s formula $K{E}^{\prime}-(K-E){K}^{\prime}=\frac{1}{2}\pi $,
Proc. Lond. Math. Soc. 3 (1905), 206–224.
Google Scholar

[6]

Dyson F. J.,
Statistical theory of energy levels of complex systems. III,
J. Math. Phys. 3 (1962), 166–175.
Google Scholar

[7]

Edelman A. and La Croix M.,
The singular values of the GUE (less is more),
preprint 2014, http://arxiv.org/1410.7065.

[8]

Forrester P. J.,
Evenness symmetry and inter-relationships between gap probabilities in random matrix theory,
Forum Math. 18 (2006), no. 5, 711–743.
Google Scholar

[9]

Forrester P. J.,
A random matrix decimation procedure relating $\beta =2/(r+1)$ to $\beta =2(r+1)$,
Comm. Math. Phys. 285 (2009), no. 2, 653–672.
Web of ScienceGoogle Scholar

[10]

Forrester P. J.,
Log-Gases and Random Matrices,
London Math. Soc. Monogr. Ser. 34,
Princeton University Press, Princeton, 2010.
Google Scholar

[11]

Forrester P. J. and Lebowitz J. L.,
Local central limit theorem for determinantal point processes,
J. Stat. Phys. 157 (2014), no. 1, 60–69.
Google Scholar

[12]

Forrester P. J. and Rains E. M.,
Interrelationships between orthogonal, unitary and symplectic matrix ensembles,
Random Matrix Models and Their Applications (Berkeley 1999),
Math. Sci. Res. Inst. Publ. 40,
Cambridge University Press, Cambridge (2001), 171–207.
Google Scholar

[13]

Gaudin M.,
Sur la loi limite de l’espacement des valeurs propres d’une matrice aléatoire,
Nucl. Phys. 25 (1961), 447–458.
Google Scholar

[14]

Gunson J.,
Proof of a conjecture of Dyson in the statistical theory of energy levels,
J. Math. Phys. 3 (1962), 752–753.
Google Scholar

[15]

Mehta M. L.,
Power series for level spacing functions of random matrix ensembles,
Z. Phys. B 86 (1992), no. 2, 285–290.
Google Scholar

[16]

Mehta M. L. and Dyson F. J.,
Statistical theory of the energy levels of complex systems. V,
J. Math. Phys. 4 (1963), 713–719.
Google Scholar

[17]

Rains E. M.,
Images of eigenvalue distributions under power maps,
Probab. Theory Related Fields 125 (2003), no. 4, 522–538.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.