[1]

Bruin P.,
Explicit bounds on automorphic and canonical Green functions of Fuchsian groups,
Mathematika 60 (2014), no. 2, 257–306.
Google Scholar

[2]

Chamizo F.,
Topics in analytic number theory,
Ph.D. thesis, Universdad Autónoma de Madrid, 1994.
Google Scholar

[3]

Chamizo F.,
Some applications of the large sieve in Riemann surfaces,
Acta Arith. 77 (1996), no. 4, 315–337.
Google Scholar

[4]

Chamizo F.,
The large sieve in Riemann surfaces,
Acta Arith. 77 (1996), no. 4, 303–313.
Google Scholar

[5]

Duke W., Rudnick Z. and Sarnak P.,
Density of integer points on affine homogeneous varieties,
Duke Math. J. 71 (1993), no. 1, 143–179.
Google Scholar

[6]

Erdélyi A., Magnus W., Oberhettinger F. and Tricomi F. G.,
Higher Transcendental Functions, Volume I,
McGraw–Hill, New York, 1953.
Google Scholar

[7]

Eskin A. and McMullen C.,
Mixing, counting, and equidistribution in Lie groups,
Duke Math. J. 71 (1993), no. 1, 181–209.
Google Scholar

[8]

Fay J. D.,
Fourier coefficients of the resolvent for a Fuchsian group,
J. Reine Angew. Math. 293/294 (1997), 143–203.
Google Scholar

[9]

Garbin D., Jorgenson J. and Munn M.,
On the appearance of Eisenstein series through degeneration,
Comment. Math. Helv. 83 (2008), no. 4, 701–721.
Google Scholar

[10]

Good A.,
Local Analysis of Selberg’s Trace Formula,
Lecture Notes in Math. 1040,
Springer, Berlin, 1983.
Google Scholar

[11]

Gradshteyn I. S. and Ryzhik I. M.,
Table of Integrals, Series, and Products, 7th ed.,
Academic Press, Amsterdam, 2007.
Google Scholar

[12]

Günther P.,
Gitterpunktprobleme in symmetrischen Riemannschen Räumen vom Rang 1,
Math. Nachr. 94 (1980), 5–27.
Google Scholar

[13]

Hill R. and Parnovski L.,
The variance of the hyperbolic lattice point counting function,
Russ. J. Math. Phys. 12 (2005), no. 4, 472–482.
Google Scholar

[14]

Huber H.,
Über eine neue Klasse automorpher Funktionen und ein Gitterpunktproblem in der hyperbolischen Ebene. I,
Comment. Math. Helv. 30 (1956), 20–62.
Google Scholar

[15]

Huber H.,
Ein Gitterpunktproblem in der hyperbolischen Ebene,
J. Reine Angew. Math. 496 (1998), 15–53.
Google Scholar

[16]

Iwaniec H.,
Spectral Methods of Automorphic Forms, 2nd ed.,
Grad. Stud. Math. 53,
American Mathematical Society, Providence, 2002.
Google Scholar

[17]

Martin K., McKee M. and Wambach E.,
A relative trace formula for a compact Riemann surface,
Int. J. Number Theory 7 (2011), no. 2, 389–429.
Google Scholar

[18]

Parkkonen J. and Paulin F.,
On the hyperbolic orbital counting problem in conjugacy classes,
Math. Z. 279 (2015), no. 3–4, 1175–1196.
Google Scholar

[19]

Patterson S. J.,
A lattice-point problem in hyperbolic space,
Mathematika 22 (1975), no. 1, 81–88.
Google Scholar

[20]

Phillips R. and Rudnick Z.,
The circle problem in the hyperbolic plane,
J. Funct. Anal. 121 (1994), no. 1, 78–116.
Google Scholar

[21]

Sarnak P.,
Class numbers of indefinite binary quadratic forms,
J. Number Theory 15 (1982), no. 2, 229–247.
Google Scholar

[22]

Selberg A.,
Equidistribution in discrete groups and the spectral theory of automorphic forms,
http://publications.ias.edu/selberg/section/2491.

[23]

Tsuzuki M.,
Spectral square means for period integrals of wave functions on real hyperbolic spaces,
J. Number Theory 129 (2009), no. 10, 2387–2438.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.