[1]

Abe K.,
On a generalization of the Hopf fibration. I. Contact structures on the generalized Brieskorn manifolds,
Tôhoku Math. J. (2) 29 (1977), no. 3, 335–374.
Google Scholar

[2]

Abe K. and Erbacher J.,
Nonregular contact structures on Brieskorn manifolds,
Bull. Amer. Math. Soc. 81 (1975), 407–409.
Google Scholar

[3]

Abouzaid M.,
Symplectic cohomology and Viterbo’s theorem,
preprint 2013, http://arxiv.org/abs/1312.3354.

[4]

Bogomolov F. A. and de Oliveira B.,
Stein small deformations of strictly pseudoconvex surfaces,
Birational Algebraic Geometry (Baltimore 1996),
Contemp. Math. 207,
American Mathematical Society, Providence (1997), 25–41.
Google Scholar

[5]

Bourgeois F. and Oancea A.,
Fredholm theory and transversality for the parametrized and for the ${S}^{1}$-invariant symplectic action,
J. Eur. Math. Soc. (JEMS) 12 (2010), no. 5, 1181–1229.
Google Scholar

[6]

Bourgeois F. and Oancea A.,
The Gysin exact sequence for ${S}^{1}$-equivariant symplectic homology,
J. Topol. Anal. 5 (2013), no. 4, 361–407.
Google Scholar

[7]

Boyer C. P. and Galicki K.,
Highly connected manifolds with positive Ricci curvature,
Geom. Topol. 10 (2006), 2219–2235, electronic.
Google Scholar

[8]

Boyer C. P. and Galicki K.,
Sasakian Geometry,
Oxford Math. Monogr.,
Oxford University Press, Oxford, 2008.
Google Scholar

[9]

Boyer C. P., Galicki K. and Kollár J.,
Einstein metrics on spheres,
Ann. of Math. (2) 162 (2005), no. 1, 557–580.
Google Scholar

[10]

Boyer C. P., Galicki K. and Nakamaye M.,
Sasakian geometry, homotopy spheres and positive Ricci curvature,
Topology 42 (2003), no. 5, 981–1002.
Google Scholar

[11]

Boyer C. P. and Nakamaye M.,
On Sasaki–Einstein manifolds in dimension five,
Geom. Dedicata 144 (2010), 141–156.
Google Scholar

[12]

Boyer C. P. and Pati J.,
On the equivalence problem for toric contact structures on ${S}^{3}$-bundles over ${S}^{2}$,
Pacific J. Math. 267 (2014), no. 2, 277–324.
Google Scholar

[13]

Boyer C. P. and Tønnesen-Friedman C. W.,
On positivity in Sasakian geometry,
in preparation.
Google Scholar

[14]

Cieliebak K. and Eliashberg Y.,
From Stein to Weinstein and Back,
Amer. Math. Soc. Colloq. Publ. 59,
American Mathematical Society, Providence, 2012.
Google Scholar

[15]

Conti D.,
Cohomogeneity one Einstein–Sasaki 5-manifolds,
Comm. Math. Phys. 274 (2007), no. 3, 751–774.
Google Scholar

[16]

El Kacimi-Alaoui A.,
Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications,
Compos. Math. 73 (1990), no. 1, 57–106.
Google Scholar

[17]

Fauck A.,
Rabinowitz–Floer homology on Brieskorn spheres,
Int. Math. Res. Not. IMRN 2015 (2015), no. 14, 5874–5906.
Google Scholar

[18]

Frauenfelder U., Schlenk F. and van Koert O.,
Displaceability and the mean Euler characteristic,
Kyoto J. Math. 52 (2012), no. 4, 797–815.
Google Scholar

[19]

Futaki A., Ono H. and Wang G.,
Transverse Kähler geometry of Sasaki manifolds and toric Sasaki–Einstein manifolds,
J. Differential Geom. 83 (2009), no. 3, 585–635.
Google Scholar

[20]

Gauntlett J. P., Martelli D., Sparks J. and Yau S.-T.,
Obstructions to the existence of Sasaki–Einstein metrics,
Comm. Math. Phys. 273 (2007), no. 3, 803–827.
Google Scholar

[21]

Ghigi A. and Kollár J.,
Kähler–Einstein metrics on orbifolds and Einstein metrics on spheres,
Comment. Math. Helv. 82 (2007), no. 4, 877–902.
Google Scholar

[22]

Grothendieck A.,
Séminaire de géométrie algébrique du Bois Marie 1962. Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2),
North-Holland Publishing, Amsterdam, 1968.
Google Scholar

[23]

Gutt J.,
On the minimal number of periodic Reeb orbits on a contact manifold
Dissertation, Universite de Strasbourg, 2014.
Google Scholar

[24]

Gutt J.,
The positive equivariant symplectic homology as an invariant for some contact manifolds,
preprint 2015, http://arxiv.org/abs/1503.01443.

[25]

He W.,
Isometry group of Sasaki–Einstein metric,
C. R. Math. Acad. Sci. Paris 352 (2014), no. 1, 71–73.
Google Scholar

[26]

Kollár J.,
Einstein metrics on five-dimensional Seifert bundles,
J. Geom. Anal. 15 (2005), no. 3, 445–476.
Google Scholar

[27]

Kwon M. and van Koert O.,
Brieskorn manifolds in contact topology,
preprint 2015, http://arxiv.org/abs/1310.0343v3;
to appear in Bull. Lond. Math. Soc..

[28]

Li C.,
Numerical solutions of Kähler–Einstein metrics on ${\mathbb{P}}^{2}$ with conical singularities along a smooth quadric curve,
J. Geom. Anal. 25 (2015), no. 3, 1773–1797.
Google Scholar

[29]

Li C. and Sun S.,
Conical Kähler–Einstein metrics revisited,
Comm. Math. Phys. 331 (2014), no. 3, 927–973.
Google Scholar

[30]

Lutz R. and Meckert C.,
Structures de contact sur certaines sphères exotiques,
C. R. Acad. Sci. Paris Sér. A-B 282 (1976), no. 11, 591–593.
Google Scholar

[31]

Marinescu G. and Yeganefar N.,
Embeddability of some strongly pseudoconvex CR manifolds,
Trans. Amer. Math. Soc. 359 (2007), no. 10, 4757–4771, electronic.
Google Scholar

[32]

Martelli D., Sparks J. and Yau S.-T.,
Sasaki–Einstein manifolds and volume minimisation,
Comm. Math. Phys. 280 (2008), no. 3, 611–673.
Google Scholar

[33]

Milnor J. and Orlik P.,
Isolated singularities defined by weighted homogeneous polynomials,
Topology 9 (1970), 385–393.
Google Scholar

[34]

Morita S.,
A topological classification of complex structures on ${S}^{1}\times {S}^{2n-1}$,
Topology 14 (1975), 13–22.
Google Scholar

[35]

Nitta Y. and Sekiya K.,
Uniqueness of Sasaki–Einstein metrics,
Tôhoku Math. J. (2) 64 (2012), no. 3, 453–468.
Google Scholar

[36]

Nozawa H.,
Deformation of Sasakian metrics,
Trans. Amer. Math. Soc. 366 (2014), no. 5, 2737–2771.
Google Scholar

[37]

Randell R. C.,
The homology of generalized Brieskorn manifolds,
Topology 14 (1975), no. 4, 347–355.
Google Scholar

[38]

Sasaki S. and Hsu C. J.,
On a property of Brieskorn manifolds,
Tôhoku Math. J. (2) 28 (1976), no. 1, 67–78.
Google Scholar

[39]

Sato H.,
Remarks concerning contact manifolds,
Tôhoku Math. J. 29 (1977), no. 4, 577–584.
Google Scholar

[40]

Smale S.,
On the structure of 5-manifolds,
Ann. of Math. (2) 75 (1962), 38–46.
Google Scholar

[41]

Takahashi T.,
Deformations of Sasakian structures and its application to the Brieskorn manifolds,
Tôhoku Math. J. (2) 30 (1978), no. 1, 37–43.
Google Scholar

[42]

Uebele P.,
Symplectic homology of some Brieskorn manifolds,
preprint 2015, http://arxiv.org/abs/1502.04547.

[43]

Ustilovsky I.,
Infinitely many contact structures on ${S}^{4m+1}$,
Int. Math. Res. Not. IMRN 1999 (1999), no. 14, 781–791.
Google Scholar

[44]

van Koert O.,
Open books for contact five-manifolds and applications of contact homology,
Dissertation, Universität zu Köln, 2005.
Google Scholar

[45]

van Koert O.,
Contact homology of Brieskorn manifolds,
Forum Math. 20 (2008), no. 2, 317–339.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.