[1]

Bargetz C. and Ortner N.,
Convolution of Vector-Valued Distributions: A Survey and Comparison,
Dissertationes Math. 495,
Institute of Mathematics, Polish Academy of Science, Warsaw, 2013.
Google Scholar

[2]

Borceux F.,
Handbook of Categorical Algebra. Volume 1: Basic Category Theory,
Encyclopedia Math. Appl. 50,
Cambridge University Press, Cambridge, 1994.
Google Scholar

[3]

Borceux F.,
Handbook of Categorical Algebra. Volume 2: Categories and Structures,
Encyclopedia Math. Appl. 51,
Cambridge University Press, Cambridge, 1994.
Google Scholar

[4]

Capelle J.,
Convolution on homogeneous spaces,
Ph.D. thesis, University of Groningen, Groningen, 1996.
Google Scholar

[5]

Dieudonné J.,
Treatise on Analysis. Volume III,
Pure Appl. Math. 10-III,
Academic Press, New York, 1972.
Google Scholar

[6]

Greub W., Halperin S. and Vanstone R.,
Connections, Curvature, And Cohomology. Volume I: De Rham Cohomology of Manifolds and Vector Bundles,
Pure Appl. Math. 47,
Academic Press, New York, 1972.
Google Scholar

[7]

Grosser M., Farkas E., Kunzinger M. and Steinbauer R.,
On the foundations of nonlinear generalized functions. I, II,
Mem. Amer. Math. Soc. 729 (2001).
Google Scholar

[8]

Grosser M., Kunzinger M., Oberguggenberger M. and Steinbauer R.,
Geometric Theory of Generalized Functions with Applications to General Relativity,
Math. Appl. 537,
Kluwer, Dordrecht, 2001.
Google Scholar

[9]

Grosser M., Kunzinger M., Steinbauer R. and Vickers J. A.,
A global theory of algebras of generalized functions,
Adv. Math. 166 (2002), no. 1, 50–72.
Google Scholar

[10]

Grosser M., Kunzinger M., Steinbauer R. and Vickers J. A.,
A global theory of algebras of generalized functions. II. Tensor distributions,
New York J. Math. 18 (2012), 139–199.
Google Scholar

[11]

Grothendieck A.,
Produits tensoriels topologiques et espaces nucléaires,
Mem. Amer. Math. Soc. 16 (1955).
Google Scholar

[12]

Helemskii A. Y.,
The Homology of Banach and Topological Algebras,
Math. Appl. 41,
Kluwer Academic, Dordrecht, 1989.
Google Scholar

[13]

Jarchow H.,
Locally Convex Spaces,
Teubner, Stuttgart, 1981.
Google Scholar

[14]

Köthe G.,
Topological Vector Spaces. II,
Grundlehren Math. Wiss. 237,
Springer, New York, 1979.
Google Scholar

[15]

Kunzinger M. and Steinbauer R.,
Foundations of a nonlinear distributional geometry,
Acta Appl. Math. 71 (2002), no. 2, 179–206.
Google Scholar

[16]

Kunzinger M. and Steinbauer R.,
Generalized pseudo-Riemannian geometry,
Trans. Amer. Math. Soc. 354 (2002), no. 10, 4179–4199.
Google Scholar

[17]

Lee J. M.,
Introduction to Smooth Manifolds,
Springer, New York, 2013.
Google Scholar

[18]

Mallios A.,
Topological Algebras. Selected Topics,
North-Holland Math. Stud. 124,
North-Holland, Amsterdam, 1986.
Google Scholar

[19]

Nigsch E. A.,
A new approach to diffeomorphism invariant algebras of generalized functions,
Proc. Edinb. Math. Soc. (2) 58 (2013), no. 3, 717–737.
Google Scholar

[20]

Nigsch E. A.,
Bornologically isomorphic representations of distributions on manifolds,
Monatsh. Math. 170 (2013), no. 1, 49–63.
Google Scholar

[21]

Nigsch E. A.,
The functional analytic foundation of Colombeau algebras,
J. Math. Anal. Appl. 421 (2015), no. 1, 415–435.
Google Scholar

[22]

Schaefer H. H.,
Topological Vector Spaces,
Springer, New York, 1971.
Google Scholar

[23]

Schwartz L.,
Sur l’impossibilité de la multiplication des distributions,
C. R. Math. Acad. Sci. Paris 239 (1954), 847–848.
Google Scholar

[24]

Schwartz L.,
Espaces de fonctions différentiables à valeurs vectorielles,
J. Anal. Math. 4 (1955), 88–148.
Google Scholar

[25]

Schwartz L.,
Théorie des distributions à valeurs vectorielles,
Ann. Inst. Fourier (Grenoble) 7 (1957), 1–141.
Google Scholar

[26]

Schwartz L.,
Théorie des distributions à valeurs vectorielles. II,
Ann. Inst. Fourier (Grenoble) 8 (1958), 1–209.
Google Scholar

[27]

Steinbauer R. and Vickers J.,
The use of generalized functions and distributions in general relativity,
Classical Quantum Gravity 23 (2006), no. 10, r91–r114.
Google Scholar

[28]

Taylor J. L.,
Homology and cohomology for topological algebras,
Adv. Math. 9 (1972), 137–182.
CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.