Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Forum Mathematicum

Managing Editor: Bruinier, Jan Hendrik

Ed. by Brüdern, Jörg / Cohen, Frederick R. / Droste, Manfred / Darmon, Henri / Duzaar, Frank / Echterhoff, Siegfried / Gordina, Maria / Neeb, Karl-Hermann / Noguchi, Junjiro / Shahidi, Freydoon / Sogge, Christopher D. / Wienhard, Anna

6 Issues per year


IMPACT FACTOR 2017: 0.695
5-year IMPACT FACTOR: 0.750

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.966
Source Normalized Impact per Paper (SNIP) 2017: 0.889

Mathematical Citation Quotient (MCQ) 2016: 0.75

Online
ISSN
1435-5337
See all formats and pricing
More options …
Volume 28, Issue 6

Issues

On regularization of vector distributions on manifolds

Eduard A. Nigsch
Published Online: 2016-05-05 | DOI: https://doi.org/10.1515/forum-2015-0067

Abstract

One can represent Schwartz distributions with values in a vector bundle E by smooth sections of E with distributional coefficients. Moreover, any linear continuous operator which maps E-valued distributions to smooth sections of another vector bundle F can be represented by sections of the external tensor product E*F with coefficients in the space (𝒟,C) of operators from scalar distributions to scalar smooth functions. We establish these isomorphisms topologically, i.e., in the category of locally convex modules, using category theoretic formalism in conjunction with L. Schwartz’ notion of ε-product.

Keywords: Vector-valued distributions; distributions on manifolds; topological tensor product,regularization

MSC 2010: 46T30; 46A32

References

  • [1]

    Bargetz C. and Ortner N., Convolution of Vector-Valued Distributions: A Survey and Comparison, Dissertationes Math. 495, Institute of Mathematics, Polish Academy of Science, Warsaw, 2013. Google Scholar

  • [2]

    Borceux F., Handbook of Categorical Algebra. Volume 1: Basic Category Theory, Encyclopedia Math. Appl. 50, Cambridge University Press, Cambridge, 1994. Google Scholar

  • [3]

    Borceux F., Handbook of Categorical Algebra. Volume 2: Categories and Structures, Encyclopedia Math. Appl. 51, Cambridge University Press, Cambridge, 1994. Google Scholar

  • [4]

    Capelle J., Convolution on homogeneous spaces, Ph.D. thesis, University of Groningen, Groningen, 1996. Google Scholar

  • [5]

    Dieudonné J., Treatise on Analysis. Volume III, Pure Appl. Math. 10-III, Academic Press, New York, 1972. Google Scholar

  • [6]

    Greub W., Halperin S. and Vanstone R., Connections, Curvature, And Cohomology. Volume I: De Rham Cohomology of Manifolds and Vector Bundles, Pure Appl. Math. 47, Academic Press, New York, 1972. Google Scholar

  • [7]

    Grosser M., Farkas E., Kunzinger M. and Steinbauer R., On the foundations of nonlinear generalized functions. I, II, Mem. Amer. Math. Soc. 729 (2001). Google Scholar

  • [8]

    Grosser M., Kunzinger M., Oberguggenberger M. and Steinbauer R., Geometric Theory of Generalized Functions with Applications to General Relativity, Math. Appl. 537, Kluwer, Dordrecht, 2001. Google Scholar

  • [9]

    Grosser M., Kunzinger M., Steinbauer R. and Vickers J. A., A global theory of algebras of generalized functions, Adv. Math. 166 (2002), no. 1, 50–72. Google Scholar

  • [10]

    Grosser M., Kunzinger M., Steinbauer R. and Vickers J. A., A global theory of algebras of generalized functions. II. Tensor distributions, New York J. Math. 18 (2012), 139–199. Google Scholar

  • [11]

    Grothendieck A., Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955). Google Scholar

  • [12]

    Helemskii A. Y., The Homology of Banach and Topological Algebras, Math. Appl. 41, Kluwer Academic, Dordrecht, 1989. Google Scholar

  • [13]

    Jarchow H., Locally Convex Spaces, Teubner, Stuttgart, 1981. Google Scholar

  • [14]

    Köthe G., Topological Vector Spaces. II, Grundlehren Math. Wiss. 237, Springer, New York, 1979. Google Scholar

  • [15]

    Kunzinger M. and Steinbauer R., Foundations of a nonlinear distributional geometry, Acta Appl. Math. 71 (2002), no. 2, 179–206. Google Scholar

  • [16]

    Kunzinger M. and Steinbauer R., Generalized pseudo-Riemannian geometry, Trans. Amer. Math. Soc. 354 (2002), no. 10, 4179–4199. Google Scholar

  • [17]

    Lee J. M., Introduction to Smooth Manifolds, Springer, New York, 2013. Google Scholar

  • [18]

    Mallios A., Topological Algebras. Selected Topics, North-Holland Math. Stud. 124, North-Holland, Amsterdam, 1986. Google Scholar

  • [19]

    Nigsch E. A., A new approach to diffeomorphism invariant algebras of generalized functions, Proc. Edinb. Math. Soc. (2) 58 (2013), no. 3, 717–737. Google Scholar

  • [20]

    Nigsch E. A., Bornologically isomorphic representations of distributions on manifolds, Monatsh. Math. 170 (2013), no. 1, 49–63. Google Scholar

  • [21]

    Nigsch E. A., The functional analytic foundation of Colombeau algebras, J. Math. Anal. Appl. 421 (2015), no. 1, 415–435. Google Scholar

  • [22]

    Schaefer H. H., Topological Vector Spaces, Springer, New York, 1971. Google Scholar

  • [23]

    Schwartz L., Sur l’impossibilité de la multiplication des distributions, C. R. Math. Acad. Sci. Paris 239 (1954), 847–848. Google Scholar

  • [24]

    Schwartz L., Espaces de fonctions différentiables à valeurs vectorielles, J. Anal. Math. 4 (1955), 88–148. Google Scholar

  • [25]

    Schwartz L., Théorie des distributions à valeurs vectorielles, Ann. Inst. Fourier (Grenoble) 7 (1957), 1–141. Google Scholar

  • [26]

    Schwartz L., Théorie des distributions à valeurs vectorielles. II, Ann. Inst. Fourier (Grenoble) 8 (1958), 1–209. Google Scholar

  • [27]

    Steinbauer R. and Vickers J., The use of generalized functions and distributions in general relativity, Classical Quantum Gravity 23 (2006), no. 10, r91–r114. Google Scholar

  • [28]

    Taylor J. L., Homology and cohomology for topological algebras, Adv. Math. 9 (1972), 137–182. CrossrefGoogle Scholar

About the article


Received: 2015-09-02

Revised: 2016-02-18

Published Online: 2016-05-05

Published in Print: 2016-11-01


Funding Source: Austrian Science Fund

Award identifier / Grant number: P26859-N25

This work was supported by the Austrian Science Fund (FWF) grant P26859-N25.


Citation Information: Forum Mathematicum, Volume 28, Issue 6, Pages 1131–1141, ISSN (Online) 1435-5337, ISSN (Print) 0933-7741, DOI: https://doi.org/10.1515/forum-2015-0067.

Export Citation

© 2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
E.A. Nigsch
Journal of Mathematical Analysis and Applications, 2016, Volume 440, Number 1, Page 183

Comments (0)

Please log in or register to comment.
Log in