Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Forum Mathematicum

Managing Editor: Bruinier, Jan Hendrik

Ed. by Brüdern, Jörg / Cohen, Frederick R. / Droste, Manfred / Darmon, Henri / Duzaar, Frank / Echterhoff, Siegfried / Gordina, Maria / Neeb, Karl-Hermann / Noguchi, Junjiro / Shahidi, Freydoon / Sogge, Christopher D. / Wienhard, Anna

6 Issues per year


IMPACT FACTOR 2017: 0.695
5-year IMPACT FACTOR: 0.750

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.966
Source Normalized Impact per Paper (SNIP) 2017: 0.889

Mathematical Citation Quotient (MCQ) 2016: 0.75

Online
ISSN
1435-5337
See all formats and pricing
More options …
Volume 29, Issue 1

Issues

Rational homotopy of complex projective varieties with normal isolated singularities

David Chataur
  • Laboratoire Amiénois de Mathématique Fondamentale et Appliquée, Université de Picardie Jules Verne 33, rue Saint-Leu, 80039 Amiens Cedex 1, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joana Cirici
  • Corresponding author
  • Fachbereich Mathematik und Informatik, Freie Universität Berlin, Arnimallee 3, 14195 Berlin, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-18 | DOI: https://doi.org/10.1515/forum-2015-0101

Abstract

Let X be a complex projective variety of dimension n with only isolated normal singularities. In this paper, we prove, using mixed Hodge theory, that if the link of each singular point of X is (n-2)-connected, then X is a formal topological space. This result applies to a large class of examples, such as normal surface singularities, varieties with ordinary multiple points, hypersurfaces with isolated singularities and, more generally, complete intersections with isolated singularities. We obtain analogous results for contractions of subvarieties.

Keywords: Rational homotopy; mixed Hodge theory; weight filtration; fundamental groups; formality,singular varieties; isolated singularities; contractions

MSC 2010: 55P62; 32S35

References

  • [1]

    Arapura D., Dimca A. and Hain R., On the fundamental groups of normal varieties, Commun. Contemp. Math. 18 (2016), no. 4, Article ID 1550065. Google Scholar

  • [2]

    Artin M., Algebraization of formal moduli. II: Existence of modifications, Ann. of Math. (2) 91 (1970), 88–135. Google Scholar

  • [3]

    Barbieri Viale L. and Srinivas V., The Néron–Severi group and the mixed Hodge structure on H2, J. Reine Angew. Math. 450 (1994), 37–42. Google Scholar

  • [4]

    Chataur D. and Cirici J., Mixed Hodge structures on the intersection homotopy type of complex varieties with isolated singularities, preprint (2016), arXiv:1603.09125 Google Scholar

  • [5]

    Chataur D., Saralegi M. and Tanré D., Intersection cohomology. Simplicial blow-up and rational homotopy, Mem. Amer. Math. Soc., to appear. Google Scholar

  • [6]

    Cirici J. and Guillén F., E1-formality of complex algebraic varieties, Algebr. Geom. Topol. 14 (2014), no. 5, 3049–3079. Google Scholar

  • [7]

    Cirici J. and Guillén F., Weight filtration on the cohomology of complex analytic spaces, J. Singul. 8 (2014), 83–99. Google Scholar

  • [8]

    Deligne P., Théorie de Hodge. III, Publ. Math. Inst. Hautes Études Sci. 44 (1974), 5–77. Google Scholar

  • [9]

    Deligne P., Griffiths P., Morgan J. and Sullivan D., Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), no. 3, 245–274. Google Scholar

  • [10]

    Dimca A., Singularities and Topology of Hypersurfaces, Universitext, Springer, New York, 1992. Google Scholar

  • [11]

    Durfee A., Mixed Hodge structures on punctured neighborhoods, Duke Math. J. 50 (1983), no. 4, 1017–1040. Google Scholar

  • [12]

    Félix Y., Oprea J. and Tanré D., Algebraic Models in Geometry, Oxf. Grad. Texts Math. 17, Oxford University Press, Oxford, 2008. Google Scholar

  • [13]

    Grauert H., Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331–368. Google Scholar

  • [14]

    Griffiths P. and Schmid W., Recent developments in Hodge theory: A discussion of techniques and results, Discrete Subgroups of Lie Groups and Applicatons to Moduli (Bombay 1973), ATA Inst. Fund. Res. Stud. Math. 7, Oxford University Press, London (1975), 31–127. Google Scholar

  • [15]

    Guillén F. and Navarro-Aznar V., Un critère d’extension des foncteurs définis sur les schémas lisses, Publ. Math. Inst. Hautes Études Sci. 95 (2002), 1–91. Google Scholar

  • [16]

    Hain R. M., Mixed Hodge structures on homotopy groups, Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 1, 111–114. Google Scholar

  • [17]

    Halperin S. and Stasheff J., Obstructions to homotopy equivalences, Adv. Math. 32 (1979), no. 3, 233–279. Google Scholar

  • [18]

    Hamm H., Lokale topologische Eigenschaften komplexer Räume, Math. Ann. 191 (1971), 235–252. Google Scholar

  • [19]

    Kapovich M. and Kollár J., Fundamental groups of links of isolated singularities, J. Amer. Math. Soc. 27 (2014), no. 4, 929–952. Google Scholar

  • [20]

    Milnor J., Singular Points of Complex Hypersurfaces, Ann. of Math. Stud. 61, Princeton University Press, Princeton, 1968. Google Scholar

  • [21]

    Morgan J. W., The algebraic topology of smooth algebraic varieties, Publ. Math. Inst. Hautes Études Sci. 48 (1978), 137–204. Google Scholar

  • [22]

    Navarro-Aznar V., Sur la théorie de Hodge des variétés algébriques à singularités isolées, Systèmes Différentiels et Singularités (Luminy 1983), Astérisque 130, Société Mathématique de France, Paris (1985), 272–307. Google Scholar

  • [23]

    Navarro-Aznar V., Sur la théorie de Hodge–Deligne, Invent. Math. 90 (1987), no. 1, 11–76. Google Scholar

  • [24]

    Peters C. and Steenbrink J., Mixed Hodge structures, Ergeb. Math. Grenzgeb. (3) 52, Springer, Berlin, 2008. Google Scholar

  • [25]

    Simpson C., Local systems on proper algebraic V-manifolds, Pure Appl. Math. Q. 7 (2011), no. 4, 17675–1759. Google Scholar

  • [26]

    Steenbrink J. H. M., Mixed Hodge structures associated with isolated singularities, Singularities (Arcata 1981), Proc. Sympos. Pure Math. 40. Part 2, American Mathematical Society, Providence (1983), 513–536. Google Scholar

  • [27]

    Sullivan D., Infinitesimal computations in topology, Publ. Math. Inst. Hautes Études Sci. 47 (1977), 269–331. Google Scholar

  • [28]

    Totaro B., Chow groups, Chow cohomology, and linear varieties, Forum Math. Sigma 2 (2014), Article ID e17. Google Scholar

  • [29]

    Weber A., Pure homology of algebraic varieties, Topology 43 (2004), no. 3, 635–644. Google Scholar

About the article


Received: 2015-05-27

Revised: 2016-01-07

Published Online: 2016-06-18

Published in Print: 2017-01-01


Funding Source: Deutsche Forschungsgemeinschaft

Award identifier / Grant number: SPP-1786

Funding Source: Ministerio de Economía y Competitividad

Award identifier / Grant number: MTM2013-42178-P

The second-named author would like to acknowledge financial support from the German Research Foundation through project SPP-1786 and partial support from the Spanish Ministry of Economy and Competitiveness through project MTM2013-42178-P.


Citation Information: Forum Mathematicum, Volume 29, Issue 1, Pages 41–57, ISSN (Online) 1435-5337, ISSN (Print) 0933-7741, DOI: https://doi.org/10.1515/forum-2015-0101.

Export Citation

© 2017 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
David Chataur and Joana Cirici
Revista Matemática Complutense, 2018

Comments (0)

Please log in or register to comment.
Log in