[1]

Adem A. and Milgram R. J.,
Cohomology of Finite Groups, 2nd ed.,
Grundlehren Math. Wiss. 309,
Springer, Berlin, 2004.
Google Scholar

[2]

Aguadé J.,
Constructing modular classifying spaces,
Israel J. Math. 66 (1989), no. 1–3, 23–40.
Google Scholar

[3]

Andersen K. K. S., Castellana N., Franjou V., Jeanneret A. and Scherer J.,
Spaces with Noetherian cohomology,
Proc. Edinb. Math. Soc. (2) 56 (2013), no. 1, 13–25.
Google Scholar

[4]

Andersen K. K. S. and Grodal J.,
The classification of 2-compact groups,
J. Amer. Math. Soc. 22 (2009), no. 2, 387–436.
Google Scholar

[5]

Andersen K. K. S., Grodal J., Møller J. M. and Viruel A.,
The classification of *p*-compact groups for *p* odd,
Ann. of Math. (2) 167 (2008), no. 1, 95–210.
Google Scholar

[6]

Bousfield A. K. and Kan D. M.,
Homotopy Limits, Completions and Localizations,
Lecture Notes in Math. 304,
Springer, Berlin, 1972.
Google Scholar

[7]

Broto C. and Kitchloo N.,
Classifying spaces of Kac–Moody groups,
Math. Z. 240 (2002), no. 3, 621–649.
Google Scholar

[8]

Broto C., Levi R. and Oliver B.,
The homotopy theory of fusion systems,
J. Amer. Math. Soc. 16 (2003), no. 4, 779–856.
Google Scholar

[9]

Broto C., Levi R. and Oliver B.,
Discrete models for the *p*-local homotopy theory of compact Lie groups and *p*-compact groups,
Geom. Topol. 11 (2007), 315–427.
Google Scholar

[10]

Broto C., Levi R. and Oliver B.,
An algebraic model for finite loop spaces,
Algebr. Geom. Topol. 14 (2014), no. 5, 2915–2981.
Google Scholar

[11]

Cantarero J., Castellana N. and Morales L.,
Vector bundles over classifying spaces and Benson–Carlson duality for *p*-local finite groups,
preprint 2015.
Google Scholar

[12]

Castellana N.,
Representacions homotòpiques de grups *p*-compactes,
Ph.D. thesis, Universitat Autònoma de Barcelona, Bellaterra, 2000.
Google Scholar

[13]

Castellana N.,
On the *p*-compact groups corresponding to complex reflection groups $G(q,r,n)$,
Trans. Amer. Math. Soc. 358 (2006), no. 7, 2799–2819.
Google Scholar

[14]

Castellana N., Levi R. and Notbohm D.,
Homology decompositions for *p*-compact groups,
Adv. Math. 216 (2007), no. 2, 491–534.
Google Scholar

[15]

Castellana N. and Libman A.,
Wreath products and representations of *p*-local finite groups,
Adv. Math. 221 (2009), no. 4, 1302–1344.
Google Scholar

[16]

Díaz A., Ruiz A. and Viruel A.,
All *p*-local finite groups of rank two for odd prime *p*,
Trans. Amer. Math. Soc. 359 (2007), no. 4, 1725–1764.
Google Scholar

[17]

Dwyer W. G. and Wilkerson C. W.,
Homotopy fixed-point methods for Lie groups and finite loop spaces,
Ann. of Math. (2) 139 (1994), no. 2, 395–442.
Google Scholar

[18]

Farjoun E. D.,
Cellular Spaces, Null Spaces and Homotopy Localization,
Lecture Notes in Math. 1622,
Springer, Berlin, 1996.
Google Scholar

[19]

González A.,
The structure of *p*-local compact groups,
Ph.D. thesis, Universitat Autònoma de Barcelona, Bellaterra, 2010.
Google Scholar

[20]

Jackowski S., McClure J. and Oliver B.,
Self homotopy equivalences of classifying spaces of compact connected Lie groups,
Fund. Math. 147 (1995), no. 2, 99–126.
Google Scholar

[21]

Jackowski S. and Oliver B.,
Vector bundles over classifying spaces of compact Lie groups,
Acta Math. 176 (1996), no. 1, 109–143.
Google Scholar

[22]

Kahn D. S. and Priddy S. B.,
Applications of the transfer to stable homotopy theory,
Bull. Amer. Math. Soc. 78 (1972), 981–987.
Google Scholar

[23]

Kaloujnine L. and Krasner M.,
Produit complet des groupes de permutations et problème d’extension de groupes. III,
Acta Sci. Math. 14 (1951), 69–82.
Google Scholar

[24]

Lannes J.,
Sur les espaces fonctionnels dont la source est le classifiant d’un p-groupe abélien élémentaire,
Publ. Math. Inst. Hautes Études Sci. 75 (1992), 135–244.
Google Scholar

[25]

Levi R.,
On finite groups and homotopy theory,
Mem. Amer. Math. Soc. 567 (1995), 1–100.
Google Scholar

[26]

Lück W.,
Transformation Groups and Algebraic *K*-Theory,
Lecture Notes in Math. 1408,
Springer, Berlin, 1989.
Google Scholar

[27]

Lundell A. T.,
A Bott map for non-stable homotopy of the unitary group,
Topology 8 (1969), 209–217.
CrossrefGoogle Scholar

[28]

Miller H.,
The Sullivan conjecture on maps from classifying spaces,
Ann. of Math. (2) 120 (1984), no. 1, 39–87.
Google Scholar

[29]

Møller J. M.,
Normalizers of maximal tori,
Math. Z. 231 (1999), no. 1, 51–74.
Google Scholar

[30]

Møller J. M.,
*N*-determined *p*-compact groups,
Fund. Math. 173 (2002), no. 3, 201–300.
Google Scholar

[31]

Nørgård-Sørensen T.,
Homotopy representations of simply connected *p*-compact groups of rank 1 or 2,
Ph.D. thesis, University of Copenhagen, Copenhagen, 2013.
Google Scholar

[32]

Notbohm D.,
Maps between classifying spaces,
Math. Z. 207 (1991), no. 1, 153–168.
Google Scholar

[33]

Oliver B.,
*p*-stubborn subgroups of classical compact Lie groups,
J. Pure Appl. Algebra 92 (1994), no. 1, 55–78.
Google Scholar

[34]

Schwartz L.,
Unstable Modules over the Steenrod Algebra and Sullivan’s Fixed Point Set Conjecture,
Chicago Lectures in Math.,
University of Chicago Press, Chicago, 1994.
Google Scholar

[35]

Wojtkowiak Z.,
On maps from $holimF$ to $\mathbb{Z}$,
Algebraic Topology (Barcelona 1986),
Lecture Notes in Math. 1298,
Springer, Berlin (1987), 227–236.
Google Scholar

[36]

Zabrodsky A.,
On the realization of invariant subgroups of ${\pi}_{*}(x)$,
Trans. Amer. Math. Soc. 285 (1984), no. 2, 467–496.
Google Scholar

[37]

Ziemiański K.,
A faithful complex representation of the 2-compact group DI(4),
Ph.D. thesis, Uniwersytet Warszawski, Warszawa, 2005.
Google Scholar

[38]

Ziemiański K.,
Homotopy representations of SO(7) and Spin(7) at the prime 2,
J. Pure Appl. Algebra 212 (2008), no. 6, 1525–1541.
Google Scholar

[39]

Ziemiański K.,
A faithful unitary representation of the 2-compact group DI(4),
J. Pure Appl. Algebra 213 (2009), no. 7, 1239–1253.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.