Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Forum Mathematicum

Managing Editor: Bruinier, Jan Hendrik

Ed. by Brüdern, Jörg / Cohen, Frederick R. / Droste, Manfred / Darmon, Henri / Duzaar, Frank / Echterhoff, Siegfried / Gordina, Maria / Neeb, Karl-Hermann / Shahidi, Freydoon / Sogge, Christopher D. / Takayama, Shigeharu / Wienhard, Anna

6 Issues per year


IMPACT FACTOR 2017: 0.695
5-year IMPACT FACTOR: 0.750

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.966
Source Normalized Impact per Paper (SNIP) 2017: 0.889

Mathematical Citation Quotient (MCQ) 2016: 0.75

Online
ISSN
1435-5337
See all formats and pricing
More options …
Volume 29, Issue 2

Issues

Unitary embeddings of finite loop spaces

José CantareroORCID iD: http://orcid.org/0000-0001-6144-2003
  • Corresponding author
  • Consejo Nacional de Ciencia y Tecnología, Centro de Investigación en Matemáticas, A. C. Unidad Mérida, Parque Científico y Tecnológico de Yucatán, Carretera Sierra Papacal-Chuburná Km 5.5, Mérida, YUC 97302, Mexico
  • orcid.org/0000-0001-6144-2003
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Natàlia Castellana
Published Online: 2016-06-21 | DOI: https://doi.org/10.1515/forum-2015-0104

Abstract

In this paper we construct faithful representations of saturated fusion systems over discrete p-toral groups and use them to find conditions that guarantee the existence of unitary embeddings of p-local compact groups. These conditions hold for the Clark–Ewing and Aguadé–Zabrodsky p-compact groups. We also show the existence of unitary embeddings of finite loop spaces.

Keywords: fusion system

MSC 2010: 55R35; 20D20; 20C20

References

  • [1]

    Adem A. and Milgram R. J., Cohomology of Finite Groups, 2nd ed., Grundlehren Math. Wiss. 309, Springer, Berlin, 2004. Google Scholar

  • [2]

    Aguadé J., Constructing modular classifying spaces, Israel J. Math. 66 (1989), no. 1–3, 23–40. Google Scholar

  • [3]

    Andersen K. K. S., Castellana N., Franjou V., Jeanneret A. and Scherer J., Spaces with Noetherian cohomology, Proc. Edinb. Math. Soc. (2) 56 (2013), no. 1, 13–25. Google Scholar

  • [4]

    Andersen K. K. S. and Grodal J., The classification of 2-compact groups, J. Amer. Math. Soc. 22 (2009), no. 2, 387–436. Google Scholar

  • [5]

    Andersen K. K. S., Grodal J., Møller J. M. and Viruel A., The classification of p-compact groups for p odd, Ann. of Math. (2) 167 (2008), no. 1, 95–210. Google Scholar

  • [6]

    Bousfield A. K. and Kan D. M., Homotopy Limits, Completions and Localizations, Lecture Notes in Math. 304, Springer, Berlin, 1972. Google Scholar

  • [7]

    Broto C. and Kitchloo N., Classifying spaces of Kac–Moody groups, Math. Z. 240 (2002), no. 3, 621–649. Google Scholar

  • [8]

    Broto C., Levi R. and Oliver B., The homotopy theory of fusion systems, J. Amer. Math. Soc. 16 (2003), no. 4, 779–856. Google Scholar

  • [9]

    Broto C., Levi R. and Oliver B., Discrete models for the p-local homotopy theory of compact Lie groups and p-compact groups, Geom. Topol. 11 (2007), 315–427. Google Scholar

  • [10]

    Broto C., Levi R. and Oliver B., An algebraic model for finite loop spaces, Algebr. Geom. Topol. 14 (2014), no. 5, 2915–2981. Google Scholar

  • [11]

    Cantarero J., Castellana N. and Morales L., Vector bundles over classifying spaces and Benson–Carlson duality for p-local finite groups, preprint 2015. Google Scholar

  • [12]

    Castellana N., Representacions homotòpiques de grups p-compactes, Ph.D. thesis, Universitat Autònoma de Barcelona, Bellaterra, 2000. Google Scholar

  • [13]

    Castellana N., On the p-compact groups corresponding to complex reflection groups G(q,r,n), Trans. Amer. Math. Soc. 358 (2006), no. 7, 2799–2819. Google Scholar

  • [14]

    Castellana N., Levi R. and Notbohm D., Homology decompositions for p-compact groups, Adv. Math. 216 (2007), no. 2, 491–534. Google Scholar

  • [15]

    Castellana N. and Libman A., Wreath products and representations of p-local finite groups, Adv. Math. 221 (2009), no. 4, 1302–1344. Google Scholar

  • [16]

    Díaz A., Ruiz A. and Viruel A., All p-local finite groups of rank two for odd prime p, Trans. Amer. Math. Soc. 359 (2007), no. 4, 1725–1764. Google Scholar

  • [17]

    Dwyer W. G. and Wilkerson C. W., Homotopy fixed-point methods for Lie groups and finite loop spaces, Ann. of Math. (2) 139 (1994), no. 2, 395–442. Google Scholar

  • [18]

    Farjoun E. D., Cellular Spaces, Null Spaces and Homotopy Localization, Lecture Notes in Math. 1622, Springer, Berlin, 1996. Google Scholar

  • [19]

    González A., The structure of p-local compact groups, Ph.D. thesis, Universitat Autònoma de Barcelona, Bellaterra, 2010. Google Scholar

  • [20]

    Jackowski S., McClure J. and Oliver B., Self homotopy equivalences of classifying spaces of compact connected Lie groups, Fund. Math. 147 (1995), no. 2, 99–126. Google Scholar

  • [21]

    Jackowski S. and Oliver B., Vector bundles over classifying spaces of compact Lie groups, Acta Math. 176 (1996), no. 1, 109–143. Google Scholar

  • [22]

    Kahn D. S. and Priddy S. B., Applications of the transfer to stable homotopy theory, Bull. Amer. Math. Soc. 78 (1972), 981–987. Google Scholar

  • [23]

    Kaloujnine L. and Krasner M., Produit complet des groupes de permutations et problème d’extension de groupes. III, Acta Sci. Math. 14 (1951), 69–82. Google Scholar

  • [24]

    Lannes J., Sur les espaces fonctionnels dont la source est le classifiant d’un p-groupe abélien élémentaire, Publ. Math. Inst. Hautes Études Sci. 75 (1992), 135–244. Google Scholar

  • [25]

    Levi R., On finite groups and homotopy theory, Mem. Amer. Math. Soc. 567 (1995), 1–100. Google Scholar

  • [26]

    Lück W., Transformation Groups and Algebraic K-Theory, Lecture Notes in Math. 1408, Springer, Berlin, 1989. Google Scholar

  • [27]

    Lundell A. T., A Bott map for non-stable homotopy of the unitary group, Topology 8 (1969), 209–217. CrossrefGoogle Scholar

  • [28]

    Miller H., The Sullivan conjecture on maps from classifying spaces, Ann. of Math. (2) 120 (1984), no. 1, 39–87. Google Scholar

  • [29]

    Møller J. M., Normalizers of maximal tori, Math. Z. 231 (1999), no. 1, 51–74. Google Scholar

  • [30]

    Møller J. M., N-determined p-compact groups, Fund. Math. 173 (2002), no. 3, 201–300. Google Scholar

  • [31]

    Nørgård-Sørensen T., Homotopy representations of simply connected p-compact groups of rank 1 or 2, Ph.D. thesis, University of Copenhagen, Copenhagen, 2013. Google Scholar

  • [32]

    Notbohm D., Maps between classifying spaces, Math. Z. 207 (1991), no. 1, 153–168. Google Scholar

  • [33]

    Oliver B., p-stubborn subgroups of classical compact Lie groups, J. Pure Appl. Algebra 92 (1994), no. 1, 55–78. Google Scholar

  • [34]

    Schwartz L., Unstable Modules over the Steenrod Algebra and Sullivan’s Fixed Point Set Conjecture, Chicago Lectures in Math., University of Chicago Press, Chicago, 1994. Google Scholar

  • [35]

    Wojtkowiak Z., On maps from holimF to , Algebraic Topology (Barcelona 1986), Lecture Notes in Math. 1298, Springer, Berlin (1987), 227–236. Google Scholar

  • [36]

    Zabrodsky A., On the realization of invariant subgroups of π*(x), Trans. Amer. Math. Soc. 285 (1984), no. 2, 467–496. Google Scholar

  • [37]

    Ziemiański K., A faithful complex representation of the 2-compact group DI(4), Ph.D. thesis, Uniwersytet Warszawski, Warszawa, 2005. Google Scholar

  • [38]

    Ziemiański K., Homotopy representations of SO(7) and Spin(7) at the prime 2, J. Pure Appl. Algebra 212 (2008), no. 6, 1525–1541. Google Scholar

  • [39]

    Ziemiański K., A faithful unitary representation of the 2-compact group DI(4), J. Pure Appl. Algebra 213 (2009), no. 7, 1239–1253. Google Scholar

About the article


Received: 2015-06-02

Revised: 2015-12-14

Published Online: 2016-06-21

Published in Print: 2017-03-01


Funding Source: Ministerio de Economía y Competitividad

Award identifier / Grant number: FEDER-MEC MTM2010-20692

Award identifier / Grant number: FEDER-MEC MTM2013-42293-P

Award identifier / Grant number: UNAB10-4E-378

Award identifier / Grant number:

Funding Source: Consejo Nacional de Ciencia y Tecnología

Award identifier / Grant number: SEP-CONACYT 242186

Funding Source: Secretaría de Educación Pública

Award identifier / Grant number: SEP-CONACYT 242186

Both authors are partially supported by FEDER-MEC grants MTM2010-20692 and MTM2013-42293-P, by UNAB10-4E-378 co-funded by FEDER and by SEP-CONACYT grant 242186.


Citation Information: Forum Mathematicum, Volume 29, Issue 2, Pages 287–311, ISSN (Online) 1435-5337, ISSN (Print) 0933-7741, DOI: https://doi.org/10.1515/forum-2015-0104.

Export Citation

© 2017 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in