[1]

van den Berg M., Bolthausen E. and den Hollander F.,
Moderate deviations for the volume of the Wiener sausage,
Ann. of Math. (2) 153 (2001), 355–406.
Google Scholar

[2]

Donsker M. D. and Varadhan S. R. S.,
Asymptotics for the Wiener sausage,
Comm. Pure Appl. Math. 28 (1975), 525–565.
Google Scholar

[3]

Getoor R. K.,
Some asymptotic formulas involving capacity,
Z. Wahrscheinlichkeitstheor. Verw. Gebiete 4 (1965), 248–252.
Google Scholar

[4]

Hamana Y.,
Limit theorems for the Wiener sausage,
Sugaku Expos. 18 (2005), 53–73.
Google Scholar

[5]

Hamana Y.,
On the expected volume of the Wiener sausage,
J. Math. Soc. Japan 62 (2010), 1113–1136.
Google Scholar

[6]

Hamana Y.,
The expected volume and surface area of the Wiener sausage in odd dimensions,
Osaka J. Math. 49 (2012), 853–868.
Google Scholar

[7]

Hamana Y.,
Asymptotic expansion of the expected volume of the Wiener sausage in even dimensions,
Kyushu J. Math. 70 (2016), 167–196.
Google Scholar

[8]

Hamana Y. and Kesten H.,
A large deviation result for the range of random walks and for the Wiener sausage,
Probab. Theory Related Fields 120 (2001), 183–208.
Google Scholar

[9]

Hamana Y. and Matsumoto H.,
The probability distributions of the first hitting times of Bessel processes,
Trans. Amer. Math. Soc. 365 (2013), 5237–5257.
Google Scholar

[10]

Hamana Y. and Matsumoto H.,
Hitting times of Bessel processes, volume of Wiener sausages and zeros of Macdonald functions,
J. Math. Soc. Japan, to appear.
Google Scholar

[11]

Hamana Y. and Matsumoto H.,
Hitting times to spheres of Brownian motions with and without drifts,
Proc. Amer. Math. Soc., to appear.
Google Scholar

[12]

Kac M. and Luttinger J. M.,
Bose–Einstein condensation in the presence of impurities II,
J. Math. Phys. 15 (1974), 183–186.
Google Scholar

[13]

Itô K. and McKean, Jr. H. P.,
Diffusion Processes and Their Sample Paths,
Springer, Berlin, 1974.
Google Scholar

[14]

Lebedev N. N.,
Special Functions and Their Applications,
Dover, New York, 1972.
Google Scholar

[15]

Le Gall J. -F.,
Sur le temps local d’intersection du mouvement Brownien plan et la méthode de renormalisation de Varadhan,
Séminaire de Probabilitiés XIX,
Lecture Notes in Math. 1123,
Springer, Berlin (1985), 314–331.
Google Scholar

[16]

Le Gall J.-F.,
Fluctuation results for the Wiener sausage,
Ann. Probab. 16 (1988), 991–1018.
Google Scholar

[17]

Le Gall J.-F.,
Sur une conjecture de M. Kac,
Probab. Theory Related Fields 78 (1988), 389–402.
Google Scholar

[18]

Le Gall J.-F.,
Wiener sausage and self-intersection local times,
J. Funct. Anal. 88 (1990), 299–341.
Google Scholar

[19]

Magnus W., Oberhettinger F. and Soni R. P.,
Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd ed.,
Springer, Berlin, 1966.
Google Scholar

[20]

Port S. C.,
Asymptotic expansions for the expected volume of a stable sausage,
Ann. Probab. 18 (1990), 492–523.
Google Scholar

[21]

Spitzer F.,
Electrostatic capacity, heat flow and Brownian motion,
Z. Wahrscheinlichkeitstheor. Verw. Gebiete 3 (1964), 110–121.
Google Scholar

[22]

Spitzer F.,
Discussion of “Subadditive ergodic theory” by J. F. C. Kingman,
Ann. Probab. 1 (1973), 904–905.
Google Scholar

[23]

Watson G. N.,
A Treatise on the Theory of Bessel Functions,
Cambridge University Press, Cambridge, 1995.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.