Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Forum Mathematicum

Managing Editor: Bruinier, Jan Hendrik

Ed. by Blomer, Valentin / Cohen, Frederick R. / Droste, Manfred / Duzaar, Frank / Echterhoff, Siegfried / Frahm, Jan / Gordina, Maria / Shahidi, Freydoon / Sogge, Christopher D. / Takayama, Shigeharu / Wienhard, Anna


IMPACT FACTOR 2018: 0.867

CiteScore 2018: 0.71

SCImago Journal Rank (SJR) 2018: 0.898
Source Normalized Impact per Paper (SNIP) 2018: 0.964

Mathematical Citation Quotient (MCQ) 2018: 0.71

Online
ISSN
1435-5337
See all formats and pricing
More options …
Volume 29, Issue 3

Issues

Representation zeta functions of some nilpotent groups associated to prehomogeneous vector spaces

Alexander Stasinski / Christopher Voll
Published Online: 2016-06-21 | DOI: https://doi.org/10.1515/forum-2015-0099

Abstract

We compute the representation zeta functions of some finitely generated nilpotent groups associated to unipotent group schemes over rings of integers in number fields. These group schemes are defined by Lie lattices whose presentations are modelled on certain prehomogeneous vector spaces. Our method is based on evaluating 𝔭-adic integrals associated to certain rank varieties of matrices of linear forms.

Keywords: Finitely generated nilpotent groups; representation zeta functions; Igusa local zeta functions; prehomogeneous vector spaces

MSC 2010: 22E55; 20F69; 05A15; 11S90; 11M41

References

  • [1]

    Avni N., Klopsch B., Onn U. and Voll C., Representation zeta functions of compact p-adic analytic groups and arithmetic groups, Duke Math. J. 162 (2013), no. 1, 111–197. Google Scholar

  • [2]

    Björner A. and Brenti F., Combinatorics of Coxeter groups, Grad. Texts in Math. 231, Springer, New York, 2005. Google Scholar

  • [3]

    Denef J., Report on Igusa’s local zeta function, Séminaire Bourbaki, Vol. 1990/91, Exposés 730–744, Astérisque 201–203, Société Mathématique de France, Paris (1991), 359–386. Google Scholar

  • [4]

    du Sautoy M. P. F. and Woodward L., Zeta Functions of Groups and Rings, Lecture Notes in Math. 1925, Springer, Berlin, 2008. Google Scholar

  • [5]

    Dung D. H. and Voll C., Uniform analytic properties of representation zeta functions of finitely generated nilpotent groups, preprint 2015, http://arxiv.org/abs/1503.06947; to appear in Trans. Amer. Math. Soc.

  • [6]

    Igusa J.-I., An Introduction to the Theory of Local Zeta Functions, AMS/IP Stud. Adv. Math. 14, American Mathematical Society, Providence, 2000. Google Scholar

  • [7]

    Kimura T., Introduction to Prehomogeneous Vector Spaces, Transl. Math. Monogr. 215, American Mathematical Society, Providence, 2003. Google Scholar

  • [8]

    Laksov D. and Thorup A., Counting matrices with coordinates in finite fields and of fixed rank, Math. Scand. 74 (1994), no. 1, 19–33. Google Scholar

  • [9]

    Rossmann T., Stability results for local zeta functions of groups and related structures, preprint 2015, http://arxiv.org/abs/1504.04164.

  • [10]

    Rossmann T., Topological representation zeta functions of unipotent groups, J. Algebra 448 (2016), 210–237. Google Scholar

  • [11]

    Stasinski A. and Voll C., Representation zeta functions of nilpotent groups and generating functions for Weyl groups of type B, Amer. J. Math. 136 (2014), no. 2, 501–550. Google Scholar

About the article


Received: 2015-05-26

Revised: 2016-05-23

Published Online: 2016-06-21

Published in Print: 2017-05-01


Funding Source: Deutsche Forschungsgemeinschaft

Award identifier / Grant number: Sonderforschungsbereich 701 at Bielefeld University

Funding Source: Engineering and Physical Sciences Research Council

Award identifier / Grant number: EP/F044194/1

Voll acknowledges support by the DFG through Sonderforschungsbereich 701 at Bielefeld University and helpful conversations with Jan Schepers. This research was supported by Engineering and Physical Sciences Research Council grant EP/F044194/1.


Citation Information: Forum Mathematicum, Volume 29, Issue 3, Pages 717–734, ISSN (Online) 1435-5337, ISSN (Print) 0933-7741, DOI: https://doi.org/10.1515/forum-2015-0099.

Export Citation

© 2017 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Angela Carnevale, Shai Shechter, and Christopher Voll
Israel Journal of Mathematics, 2018

Comments (0)

Please log in or register to comment.
Log in