[1]

Arndt P. and Kapulkin K.,
Homotopy-theoretic models of type theory,
Typed Lambda Calculi and Applications,
Lecture Notes Comput. Sci. 6690,
Springer, Heidelberg (2011), 45–60.
Google Scholar

[2]

Awodey S., Garner R., Martin-Löf P. and Voevodsky V.,
The Homotopy interpretation of constructive type theory,
Report No. 11/2011, Mathematisches Forschungsinstitut Oberwolfach, Oberwolfach, 2011.
Google Scholar

[3]

Awodey S. and Warren M.,
Homotopy theoretic models of identity types,
Math. Proc. Cambridge Philos. Soc. 146 (2009), 45–55.
Google Scholar

[4]

Barr M. and Wells C.,
Toposes, Triples and Theories,
Grundlehren Math. Wiss. 278,
Springer, New York, 1985.
Corrected reprint in Repr. Theory Appl. Categ. 12 (2005), 1–287, http://www.tac.mta.ca/tac/reprints/articles/12/tr12abs.html.

[5]

Carboni A., Janelidze G., Kelly G. M. and Paré R.,
On localization and stabilization for factorization systems,
Appl. Categ. Structures 5 (1997), 1–58.
Google Scholar

[6]

Cassidy C., Hébert M. and Kelly G. M.,
Reflective subcategories, localizations and factorization systems,
J. Aust. Math. Soc. Ser. A 38 (1985), 287–329.
Google Scholar

[7]

Cisinski D.-C.,
Théories homotopiques dans les topos,
J. Pure Appl. Algebra 174 (2002), 43–82.
Google Scholar

[8]

Cisinski D.-C.,
Univalent universes for elegant models of homotopy types,
preprint 2014, https://arxiv.org/abs/1406.0058.

[9]

D.-C. Cisinski and M. Shulman ,
Entry at the *n*-Category Café,
http://golem.ph.utexas.edu/category/2012/05/the_mysterious_nature_of_right.html#c041306.
Google Scholar

[10]

Dugger D. and Spivak D.,
Mapping spaces in quasi-categories,
Algebr. Geom. Topol. 11 (2011), 263–325.
Google Scholar

[11]

Dwyer W. G. and Kan D. M.,
Homotopy theory and simplicial groupoids,
Nederl. Akad. Wetensch. Indag. Math. 46 (1984), 379–385.
Google Scholar

[12]

Gambino N. and Garner R.,
The identity type weak factorisation system,
Theoret. Comput. Sci. 409 (2008), 94–109.
Google Scholar

[13]

Garner R. and Lack S.,
Grothendieck quasitoposes,
J. Algebra 355 (2012), 111–127.
Google Scholar

[14]

Gepner D. and Haugseng R.,
Enriched $\mathrm{\infty}$-categories via non-symmetric $\mathrm{\infty}$-operads,
Adv. Math. 279 (2015), 575–716.
Google Scholar

[15]

Hofmann M. and Streicher T.,
The groupoid interpretation of type theory,
Twenty-Five Years of Constructive Type Theory,
Oxford Logic Guides 36,
Oxford University Press, Oxford (1998), 83–111.
Google Scholar

[16]

Joyal A.,
The theory of quasi-categories,
Advanced Course on Simplicial Methods in Higher Categories. Vol. II,
Quaderns 45,
CRM Barcelona, Bellaterra (2008), 147–497.
Google Scholar

[17]

Kapulkin K. and Lumsdaine P. L.,
The simplicial model of univalent foundations (after Voevodsky),
preprint 2012, https://arxiv.org/abs/1211.2851.

[18]

Kapulkin K., Lumsdaine P. L. and Voevodsky V.,
Univalence in simplicial sets,
preprint 2012, http://arxiv.org/abs/1203.2553.

[19]

Lumsdaine P. L.,
Weak ω-categories from intensional type theory,
Log. Methods Comput. Sci. 6 (2010), no. 3:24, 1–19.
Google Scholar

[20]

Lumsdaine P. L. and Warren M.,
The local universes model: An overlooked coherence construction for dependent type theories,
ACM Trans. Comput. Log. 16 (2015), Article ID 23.
Google Scholar

[21]

Lurie J.,
Higher Topos Theory,
Ann. of Math. Stud. 170,
Princeton University Press, Princeton, 2009,
available from http://www.math.harvard.edu/~lurie/.

[22]

Lurie J.,
Higher algebra, available from http://www.math.harvard.edu/~lurie/.

[23]

Mac Lane S. and Moerdijk I.,
Sheaves in Geometry and Logic: A First Introduction to Topos Theory,
Springer, New York, 1995.
Google Scholar

[24]

Morel F. and Voevodsky V.,
${\text{\mathbf{A}}}^{1}$-homotopy theory of schemes,
Publ. Math. Inst. Hautes Études Sci. 90 (1999), 45–143.
Google Scholar

[25]

Rezk C.,
A model for the homotopy theory of homotopy theory,
Trans. Amer. Math. Soc. 353 (2001), 973–1007.
Google Scholar

[26]

Shulman M.,
The univalence axiom for elegant Reedy presheaves,
Homology Homotopy Appl. 17 (2015), 81–106.
Google Scholar

[27]

Shulman M.,
The univalence axiom for inverse diagrams and homotopy canonicity,
Math. Structures Comput. Sci. 25 (2015), 1203–1277.
Google Scholar

[28]

Spitzweck M. and Østvær P. A.,
Motivic twisted K-theory,
Algebr. Geom. Topol. 12 (2012), 565–599.
Google Scholar

[29]

Streicher T.,
A model of type theory in simplicial sets: A brief introduction to Voevodsky’s homotopy type theory,
J. Appl. Log. 12 (2014), 45–49.
Google Scholar

[30]

van den Berg B. and Garner R.,
Types are weak ω-groupoids,
Proc. Lond. Math. Soc. (3) 102 (2011), 370–394.
Google Scholar

[31]

Voevodsky V.,
Notes on type systems, 2011,
available from http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations.html.

[32]

nLab entry,
Model of type theory in an (infinity,1)-topos,
https://ncatlab.org/homotopytypetheory/show/model+of+type+theory+in+an+(infinity,1)-topos.

[33]

The Univalent Foundations Program,
Homotopy Type Theory–Univalent Foundations of Mathematics, Institute for Advanced Study, Princeton, 2013,
available from http://homotopytypetheory.org/book.

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.