Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Forum Mathematicum

Managing Editor: Bruinier, Jan Hendrik

Ed. by Blomer, Valentin / Cohen, Frederick R. / Droste, Manfred / Duzaar, Frank / Echterhoff, Siegfried / Frahm, Jan / Gordina, Maria / Shahidi, Freydoon / Sogge, Christopher D. / Takayama, Shigeharu / Wienhard, Anna

IMPACT FACTOR 2018: 0.867

CiteScore 2018: 0.71

SCImago Journal Rank (SJR) 2018: 0.898
Source Normalized Impact per Paper (SNIP) 2018: 0.964

Mathematical Citation Quotient (MCQ) 2018: 0.71

See all formats and pricing
More options …
Volume 29, Issue 3


On subordinate random walks

Ante Mimica
  • Corresponding author
  • Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-07-29 | DOI: https://doi.org/10.1515/forum-2016-0031


In this article subordination of random walks in d is considered. We prove that subordination of random walks in the sense of [4] yields the same process as subordination in the sense of Lévy processes. Furthermore, we prove that appropriately scaled subordinate random walk converges to a multiple of a rotationally 2α-stable process if and only if the Laplace exponent of the corresponding subordinator varies regularly at zero with index α(0,1].

Keywords: Random walk; subordination; compound Poisson process; Lévy process; regular variation,invariance principle

MSC 2010: 60J75; 60G51; 60G52; 60F17


  • [1]

    Aldous D., Stopping times and tightness, Ann. Probab. 6 (1978), no. 2, 335–340. Google Scholar

  • [2]

    Bertoin J., Lévy Processes, Cambridge University Press, Cambridge, 1996. Google Scholar

  • [3]

    Bingham N. H., Goldie C. M. and Teugels J. L., Regular Variation, Cambridge University Press, Cambridge, 1987. Google Scholar

  • [4]

    Bendikov A. and Saloff-Coste L., Random walks on groups and discrete subordination, Math. Nachr. 285 (2012), 580–605. Google Scholar

  • [5]

    Feller W., An Introduction to Probability Theory and Its Applications, John Wiley & Sons, New York, 1971. Google Scholar

  • [6]

    Jacod J. and Shiryaev A. N., Limit Theorems for Stochastic Processes, Springer, Berlin, 2003. Google Scholar

  • [7]

    Kalenberg O., Foundations of Modern Probability, Springer, Berlin, 2002. Google Scholar

  • [8]

    Sato K.-I., Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, 1999. Google Scholar

  • [9]

    Schilling R. L., Song R. and Vondraček Z., Bernstein Functions: Theory and Applications, Walter de Gruyter, Berlin, 2012. Google Scholar

About the article

Received: 2016-02-06

Revised: 2016-06-03

Published Online: 2016-07-29

Published in Print: 2017-05-01

Funding Source: Hrvatska Zaklada za Znanost

Award identifier / Grant number: 3526

Research supported by Croatian Science Foundation under the project 3526.

Citation Information: Forum Mathematicum, Volume 29, Issue 3, Pages 653–664, ISSN (Online) 1435-5337, ISSN (Print) 0933-7741, DOI: https://doi.org/10.1515/forum-2016-0031.

Export Citation

© 2017 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Alexander Bendikov, Wojciech Cygan, and Bartosz Trojan
Stochastic Processes and their Applications, 2017, Volume 127, Number 10, Page 3268

Comments (0)

Please log in or register to comment.
Log in