Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Forum Mathematicum

Managing Editor: Bruinier, Jan Hendrik

Ed. by Blomer, Valentin / Cohen, Frederick R. / Droste, Manfred / Duzaar, Frank / Echterhoff, Siegfried / Frahm, Jan / Gordina, Maria / Shahidi, Freydoon / Sogge, Christopher D. / Takayama, Shigeharu / Wienhard, Anna


IMPACT FACTOR 2018: 0.867

CiteScore 2018: 0.71

SCImago Journal Rank (SJR) 2018: 0.898
Source Normalized Impact per Paper (SNIP) 2018: 0.964

Mathematical Citation Quotient (MCQ) 2018: 0.71

Online
ISSN
1435-5337
See all formats and pricing
More options …
Volume 29, Issue 3

Issues

On the infimum of the spectrum of a relativistic Schrödinger operator

Mohammed El Aïdi
  • Corresponding author
  • Departamento de Matemáticas, Universidad Nacional de Colombia, sede Bogotá, Avenida carrera 30 número 45-03, Edificio 404, Bogotá, D.C., Colombia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-21 | DOI: https://doi.org/10.1515/forum-2016-0095

Abstract

In this paper, we look for an explicit lower bound of the smallest value of the spectrum for a relativistic Schrödinger operator in a domain of the Euclidean space.

Keywords: Fractional-capacity; quadratic forms; covering multiplicity; fractional Sobolev inequality

MSC 2010: 34L15; 34L05; 35P15; 81Q10; 47A07; 47A40

References

  • [1]

    Banica V., del Mar González M. and Sáez M., Some constructions for the fractional Laplacian on noncompact manifolds, Rev. Mat. Iberoam. 31 (2015), no. 2, 681–712. Google Scholar

  • [2]

    Cotsiolis A. and Tavoularis N. K., Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl. 295 (2004), no. 1, 225–236. Google Scholar

  • [3]

    Dyson F. J. and Lenard A., Stability of matter I, J. Math. Phys. 8 (1967), 423–434. Google Scholar

  • [4]

    Dyson F. J. and Lenard A., Stability of matter II, J. Math. Phys. 9 (1968), 1538–1545. Google Scholar

  • [5]

    El Aïdi M., Positivity criteria for a hyperbolic Schrödinger operator, Bull. Sci. Math. 137 (2013), 643–652. Google Scholar

  • [6]

    Fournais S. and Helffer B., Spectral Methods in Surface Superconductivity, Springer, Berlin, 2010. Google Scholar

  • [7]

    Kondratiev V., Maz’ya V. and Shubin M., Discreteness of spectrum and strict positivity criteria for magnetic Schrödinger operators, Comm. Partial Differential Equations 29 (2004), no. 3–4, 489–521. Google Scholar

  • [8]

    Kondratiev V. and Shubin M., Discreteness of spectrum for the Schrödinger operators on manifolds of bounded geometry, The Maz’ya Anniversary Collection. Vol. 2 (Rostock 1998), Oper. Theory Adv. Appl. 110, Birkhäuser, Basel (1999), 185–226. Google Scholar

  • [9]

    Lieb E. H. and Loss M., Analysis, American Mathematical Society, Providence, 1997. Google Scholar

  • [10]

    Lieb E. H. and Thirring W., Bound for the kinetic energy of fermions which proves the stability of matter, Phys. Rev. Lett. 35 (1975), 687–689; errata, Phys. Rev. Lett. 35 (1975), 1116. Google Scholar

  • [11]

    Lieb E. H. and Yau H.-T., The stability and instability of relativistic matter, Comm. Math. Phys. 118 (1998), 177–213. Google Scholar

  • [12]

    Lipkin R., The stability of matter, Science News 148 (1995), no. 16. Google Scholar

  • [13]

    Maz’ya V. G., Sobolev Space with Application to Elliptic Partial Differential Equations, 2nd ed., Grundlehren Math. Wiss. 342, Springer, Berlin, 2011. Google Scholar

  • [14]

    Maz’ya V. and Shubin M., Can one see the fundamental frequency of a drum?, Lett. Math. Phys. 74 (2005), no. 2, 135–151. Google Scholar

  • [15]

    Maz’ya V. and Shubin M., Discreteness of spectrum and positivity criteria for Schrödinger operators, Ann. of Math. (2) 162 (2005), no. 2, 919–942. Google Scholar

  • [16]

    Milatovic O., On a positivity preservation property for Schrödinger operators on Riemannian manifold, Proc. Amer. Math. Soc. 144 (2016), 301–313. Google Scholar

  • [17]

    Solovej P. J., Stability of matter, Encyclopedia of Mathematical Physics. Vol. 5, Elsevier, Oxford (2006), 8–14. Google Scholar

About the article


Received: 2016-04-12

Revised: 2016-06-07

Published Online: 2016-06-21

Published in Print: 2017-05-01


Citation Information: Forum Mathematicum, Volume 29, Issue 3, Pages 575–579, ISSN (Online) 1435-5337, ISSN (Print) 0933-7741, DOI: https://doi.org/10.1515/forum-2016-0095.

Export Citation

© 2017 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in