[1]

G. Abrams and G. Aranda Pino,
The Leavitt path algebra of a graph,
J. Algebra 293 (2005), 319–334.
Google Scholar

[2]

G. Abrams and M. Tomforde,
Isomorphism and Morita equivalence of graph algebras,
Trans. Amer. Math. Soc. 363 (2011), 3733–3767.
Google Scholar

[3]

P. Ara, M. Brustenga and G. Cortiñas,
K-theory of Leavitt path algebras,
Münster J. Math. 2 (2009), 5–34.
Google Scholar

[4]

P. Ara and R. Exel,
Dynamical systems associated to separated graphs, graph algebras, and paradoxical decompositions,
Adv. Math. 252 (2014), 748–804.
Web of ScienceGoogle Scholar

[5]

P. Ara, M. A. Moreno and E. Pardo,
Nonstable *K*-theory for graph algebras,
Algebr. Represent. Theory 10 (2007), 157–178.
Google Scholar

[6]

J. H. Brown, L. O. Clark and A. an Huef,
Diagonal-preserving ring ${}^{*}$-isomorphisms of Leavitt path algebras,
preprint (2015), http://arxiv.org/abs/1510.05309.

[7]

N. Brownlowe, T. M. Carlsen and M. F. Whittaker,
Graph algebras and orbit equivalence,
Ergodic Theory Dynam. Systems (2015), 10.1017/etds.2015.52.
Google Scholar

[8]

L. O. Clark, C. Farthing, A. Sims and M. Tomforde,
A groupoid generalisation of Leavitt path algebras,
Semigroup Forum 89 (2014), 501–517.
Web of ScienceGoogle Scholar

[9]

L. O. Clark and A. Sims,
Equivalent groupoids have Morita equivalent Steinberg algebras,
J. Pure Appl. Algebra 219 (2015), 2062–2075.
Web of ScienceGoogle Scholar

[10]

R. Exel,
Inverse semigroups and combinatorial ${C}^{\ast}$-algebras,
Bull. Braz. Math. Soc. (N.S.) 39 (2008), 191–313.
Google Scholar

[11]

R. Exel,
Partial dynamical systems, Fell bundles and applications,
preprint (2015), http://arxiv.org/abs/1511.04565.

[12]

C. Farthing, P. S. Muhly and T. Yeend,
Higher-rank graph ${C}^{*}$-algebras: An inverse semigroup and groupoid approach,
Semigroup Forum 71 (2005), 159–187.
Google Scholar

[13]

R. Johansen and A. P. W. Sørensen,
The Cuntz splice does not preserve $*$-isomorphism of Leavitt path algebras over $\mathbb{Z}$,
J. Pure Appl. Algebra 220 (2016), 3966–3983.
Google Scholar

[14]

A. Kumjian,
On ${C}^{\ast}$-diagonals,
Canad. J. Math. 38 (1986), 969–1008.
Google Scholar

[15]

A. Kumjian and D. Pask,
Higher rank graph ${C}^{\ast}$-algebras,
New York J. Math. 6 (2000), 1–20.
Google Scholar

[16]

A. Kumjian, D. Pask and I. Raeburn,
Cuntz–Krieger algebras of directed graphs,
Pacific J. Math. 184 (1998), 161–174.
Google Scholar

[17]

A. Kumjian, D. Pask, I. Raeburn and J. Renault,
Graphs, groupoids, and Cuntz–Krieger algebras,
J. Funct. Anal. 144 (1997), 505–541.
Google Scholar

[18]

M. V. Lawson,
Inverse Semigroups. The Theory of Partial Symmetries,
World Scientific, River Edge, 1998.
Google Scholar

[19]

M. V. Lawson,
A noncommutative generalization of Stone duality,
J. Aust. Math. Soc. 88 (2010), 385–404.
Google Scholar

[20]

M. V. Lawson and D. H. Lenz,
Pseudogroups and their étale groupoids,
Adv. Math. 244 (2013), 117–170.
Google Scholar

[21]

X. Li,
Continuous orbit equivalence rigidity,
preprint (2015), http://arxiv.org/abs/1503.01704.

[22]

K. Matsumoto and H. Matui,
Continuous orbit equivalence of topological Markov shifts and Cuntz–Krieger algebras,
Kyoto J. Math. 54 (2014), 863–877.
Google Scholar

[23]

A. L. T. Paterson,
Groupoids, Inverse Semigroups, and Their Operator Algebras,
Birkhäuser, Boston, 1999.
Google Scholar

[24]

A. L. T. Paterson,
Graph inverse semigroups, groupoids and their ${C}^{*}$-algebras,
J. Operator Theory 48 (2002), 645–662.
Google Scholar

[25]

J. Renault,
A Groupoid Approach to ${C}^{\ast}$-Algebras,
Springer, Berlin, 1980.
Google Scholar

[26]

J. Renault,
Cartan subalgebras in ${C}^{*}$-algebras,
Irish Math. Soc. Bull. 61 (2008), 29–63.
Google Scholar

[27]

B. Steinberg,
A groupoid approach to discrete inverse semigroup algebras,
Adv. Math. 223 (2010), 689–727.
Web of ScienceGoogle Scholar

[28]

M. Tomforde,
Uniqueness theorems and ideal structure for Leavitt path algebras,
J. Algebra 318 (2007), 270–299.
Web of ScienceGoogle Scholar

[29]

M. Tomforde,
Leavitt path algebras with coefficients in a commutative ring,
J. Pure Appl. Algebra 215 (2011), 471–484.
Web of ScienceGoogle Scholar

[30]

M. Tomforde,
The graph algebra problem page,
www.math.uh.edu/~tomforde/GraphAlgebraProblems/GraphAlgebraProblemPage.html.

[31]

F. Wehrung,
Refinement monoids, equidecomposability types, and Boolean inverse semigroups,
preprint (2016), https://hal.archives-ouvertes.fr/hal-01197354.

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.