[1]

I. Ágoston, V. Dlab and E. Lukács,
Quasi-hereditary extension algebras,
Algebr. Represent. Theory 6 (2003), no. 1, 97–117.
Google Scholar

[2]

H. Andersen and C. Stroppel,
Twisting functors on $\mathcal{\mathcal{O}}$,
Represent. Theory 7 (2003), 681–699.
Google Scholar

[3]

E. Backelin,
Koszul duality for parabolic and singular category O,
Represent. Theory 3 (1999), 139–152.
Google Scholar

[4]

A. Beilinson and J. Bernštein,
Localisation de *g*-modules,
C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 15–18.
Google Scholar

[5]

A. Beilinson, V. Ginzburg and W. Soergel,
Koszul duality patterns in representation theory,
J. Amer. Math. Soc. 9 (1996), no. 2, 473–527.
Google Scholar

[6]

J. Bernstein, I. Frenkel and M. Khovanov,
A categorification of the Temperley–Lieb algebra and Schur quotients of $U(\U0001d530{\U0001d529}_{2})$ via projective and Zuckerman functors,
Selecta Math. (N.S.) 5 (1999), no. 2, 199–241.
Google Scholar

[7]

I. Bernštein and S. Gel’fand,
Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras,
Compos. Math. 41 (1980), no. 2, 245–285.
Google Scholar

[8]

I. Bernštein, I. Gel’fand and S. Gel’fand,
A certain category of $\U0001d524$-modules,
Funktsional. Anal. i Prilozhen. 10 (1976), no. 2, 1–8.
Google Scholar

[9]

A. Björner and F. Brenti,
Combinatorics of Coxeter Groups,
Grad. Texts in Math. 231,
Springer, New York, 2005.
Google Scholar

[10]

B. Boe and D. Nakano,
Representation type of the blocks of category ${\mathcal{\mathcal{O}}}_{S}$,
Adv. Math. 196 (2005), no. 1, 193–256.
Google Scholar

[11]

J. Brundan,
Centers of degenerate cyclotomic Hecke algebras and parabolic category $\mathcal{\mathcal{O}}$,
Represent. Theory 12 (2008), 236–259.
Google Scholar

[12]

J. Brundan,
Representations of the general linear Lie superalgebra in the BGG category $\mathcal{\mathcal{O}}$,
Developments and Retrospectives in Lie Theory,
Dev. Math. 38,
Springer, Cham (2014), 71–98.
Google Scholar

[13]

K. Carlin,
Extensions of Verma modules,
Trans. Amer. Math. Soc. 294 (1986), no. 1, 29–43.
Google Scholar

[14]

S. Cheng, V. Mazorchuk and W. Wang,
Equivalence of blocks for the general linear Lie superalgebra,
Lett. Math. Phys. 103 (2013), no. 12, 1313–1327.
Google Scholar

[15]

S. Cheng and W. Wang,
Dualities and Representations of Lie Superalgebras,
Grad. Stud. Math. 144,
American Mathematical Society, Providence, 2012.
Google Scholar

[16]

E. Cline, B. Parshall and L. Scott,
Finite-dimensional algebras and highest weight categories,
J. Reine Angew. Math. 391 (1988), 85–99.
Google Scholar

[17]

E. Cline, B. Parshall and L. Scott,
Infinitesimal Kazhdan–Lusztig theories,
Kazhdan–Lusztig Theory and Related Topics,
Contemp. Math. 139,
American Mathematical Society, Providence (1992), 43–73.
Google Scholar

[18]

D. Collingwood,
Representations of Rank one Lie Groups,
Res. Notes Math. 137,
Pitman, Boston, 1985.
Google Scholar

[19]

D. Collingwood, R. Irving and B. Shelton,
Filtrations on generalized Verma modules for Hermitian symmetric pairs,
J. Reine Angew. Math. 383 (1988), 54–86.
Google Scholar

[20]

K. Coulembier and V. Mazorchuk,
Twisting functors, primitive ideals and star actions for classical Lie superalgebras,
J. Reine Ang. Math. (2014), 10.1515/crelle-2014-0079.
Google Scholar

[21]

K. Coulembier and V. Mazorchuk,
Dualities and derived equivalences for parabolic category $\mathcal{\mathcal{O}}$,
preprint (2015), http://arxiv.org/abs/1506.08590.

[22]

K. Coulembier and V. Mazorchuk,
Extension fullness of the categories of Gelfand–Zeitlin and Whittaker modules,
SIGMA Symmetry Integrability Geom. Methods Appl. 11 (2015), Paper No. 016.
Google Scholar

[23]

K. Coulembier and V. Mazorchuk,
Some homological properties of category $\mathcal{\mathcal{O}}$. III,
Adv. Math. 283 (2015), 204–231.
Google Scholar

[24]

K. Coulembier and V. Serganova,
Homological invariants in category $\mathcal{\mathcal{O}}$ for $\U0001d524\U0001d529(m|n)$,
preprint (2015), http://arxiv.org/abs/1501.01145.

[25]

V. Deodhar,
On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan–Lusztig polynomials,
J. Algebra 111 (1987), no. 2, 483–506.
Google Scholar

[26]

V. Dlab and C. Ringel,
Quasi-hereditary algebras,
Illinois J. Math. 33 (1989), no. 2, 280–291.
Google Scholar

[27]

V. Dlab and C. Ringel,
The module theoretical approach to quasi-hereditary algebras,
Representations of Algebras and Related Topics (Kyoto 1990),
London Math. Soc. Lecture Note Ser. 168,
Cambridge University Press, Cambridge (1992). 200–224.
Google Scholar

[28]

T. Enright, M. Hunziker and W. Pruett,
Diagrams of Hermitian type, highest weight modules, and syzygies of determinantal varieties,
Symmetry: Representation Theory and its Applications,
Progr. Math. 257,
Springer, New York (2014), 121–184.
Google Scholar

[29]

T. Enright and B. Shelton,
Categories of highest weight modules: Applications to classical Hermitian symmetric pairs,
Mem. Amer. Math. Soc. 67 (1987), Paper No. 367.
Google Scholar

[30]

T. Enright and N. Wallach,
Notes on homological algebra and representations of Lie algebras,
Duke Math. J. 47 (1980), no. 1, 1–15.
Google Scholar

[31]

A. Fuser,
The Alexandru conjectures,
Prepublication de l’Institut Elie Cartan, Nancy, 1997.
Google Scholar

[32]

P. Gaillard,
Statement of the Alexandru conjecture,
preprint (2000), http://arxiv.org/abs/math/0003070.

[33]

M. Geck,
Kazhdan–Lusztig cells and the Murphy basis,
Proc. Lond. Math. Soc. (3) 93 (2006), no. 3, 635–665.
CrossrefGoogle Scholar

[34]

D. Happel,
Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras,
London Math. Soc. Lecture Note Ser. 119,
Cambridge University Press, Cambridge, 1988.
Google Scholar

[35]

R. Hermann,
Monoidal categories and the Gerstenhaber bracket in Hochschild cohomology,
preprint (2014), https://arxiv.org/abs/1403.3597.

[36]

J. Humphreys,
Representations of Semisimple Lie Algebras in the BGG Category O,
Grad. Stud. Math. 94,
American Mathematical Society, Providence, 2008.
Google Scholar

[37]

R. Irving,
Projective modules in the category ${\mathcal{\mathcal{O}}}_{S}$: Loewy series,
Trans. Amer. Math. Soc. 291 (1985), no. 2, 733–754.
Google Scholar

[38]

R. Irving,
Projective modules in the category ${\mathcal{\mathcal{O}}}_{S}$: Self-duality,
Trans. Amer. Math. Soc. 291 (1985), no. 2, 701–732.
Google Scholar

[39]

R. Irving,
A filtered category $\mathcal{\mathcal{O}}$ and applications,
Mem. Amer. Math. Soc. 83 (1990), Paper No. 419.
Google Scholar

[40]

R. Irving,
Singular blocks of the category $\mathcal{\mathcal{O}}$,
Math. Z. 204 (1990), no. 2, 209–224.
Google Scholar

[41]

D. Kazhdan and G. Lusztig,
Representations of Coxeter groups and Hecke algebras,
Invent. Math. 53 (1979), no. 2, 165–184.
Google Scholar

[42]

O. Khomenko and V. Mazorchuk,
On Arkhipov’s and Enright’s functors,
Math. Z. 249 (2005), no. 2, 357–386.
Google Scholar

[43]

T. Kildetoft and V. Mazorchuk,
Parabolic projective functors in type A,
Adv. Math. 301 (2016), 785–803.
Google Scholar

[44]

S. König,
On the global dimension of quasi-hereditary algebras with triangular decomposition,
Proc. Amer. Math. Soc. 124 (1996), no. 7, 1993–1999.
Google Scholar

[45]

G. Lusztig,
Cells in affine Weyl groups,
Algebraic Groups and Related Topics (Kyoto/Nagoya 1983),
Adv. Stud. Pure Math. 6,
North-Holland, Amsterdam (1985), 255–287.
Google Scholar

[46]

G. Lusztig,
Cells in affine Weyl groups. II,
J. Algebra 109 (1987), no. 2, 536–548.
Google Scholar

[47]

V. Mazorchuk,
Some homological properties of the category O,
Pacific J. Math. 232 (2007), no. 2, 313–341.
Google Scholar

[48]

V. Mazorchuk,
Applications of the category of linear complexes of tilting modules associated with the category $\mathcal{\mathcal{O}}$,
Algebr. Represent. Theory 12 (2009), no. 6, 489–512.
Google Scholar

[49]

V. Mazorchuk,
Some homological properties of the category O. II,
Represent. Theory 14 (2010), 249–263.
Google Scholar

[50]

V. Mazorchuk,
Parabolic category $\mathcal{\mathcal{O}}$ for classical Lie superalgebras,
Advances in Lie Superalgebras,
Springer INdAM Ser. 7,
Springer, Cham (2014), 149–166.
Google Scholar

[51]

V. Mazorchuk and V. Miemietz,
Cell 2-representations of finitary 2-categories,
Compos. Math. 147 (2011), 1519–1545.
Google Scholar

[52]

V. Mazorchuk and V. Miemietz,
Transitive 2-representations of finitary 2-categories,
Trans. Amer. Math. Soc. 368 (2016), no. 11, 7623–7644.
Google Scholar

[53]

V. Mazorchuk and S. Ovsienko,
Finitistic dimension of properly stratified algebras,
Adv. Math. 186 (2004), no. 1, 251–265.
Google Scholar

[54]

V. Mazorchuk, S. Ovsienko and C. Stroppel,
Quadratic duals, Koszul dual functors, and applications,
Trans. Amer. Math. Soc. 361 (2009), no. 3, 1129–1172.
Google Scholar

[55]

V Mazorchuk and C. Stroppel,
On functors associated to a simple root,
J. Algebra 314 (2007), no. 1, 97–128.
Google Scholar

[56]

V. Mazorchuk and C. Stroppel,
Categorification of (induced) cell modules and the rough structure of generalised Verma modules,
Adv. Math. 219 (2008), no. 4, 1363–1426.
Google Scholar

[57]

V. Mazorchuk and C. Stroppel,
Projective-injective modules, Serre functors and symmetric algebras,
J. Reine Angew. Math. 616 (2008), 131–165.
Google Scholar

[58]

I. Musson,
Lie Superalgebras and Enveloping Algebras,
Grad. Stud. Math. 131,
American Mathematical Society, Providence, 2012.
Google Scholar

[59]

B. Parshall and L. Scott,
Derived categories, quasi-hereditary algebras and algebraic groups,
Proceedings of the Ottawa-Moosonee workshop in Algebra (Ottawa/Moosonee 1987),
Math. Lect. Note Ser. Expo. Math. CRAF Carleton Univ. 3,
Carleton University, Ottawa (1988).
Google Scholar

[60]

I. Penkov and I. Skornyakov,
Cohomologie des $\mathcal{\mathcal{D}}$-modules tordus typiques sur les supervariétés de drapeaux,
C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 20, 1005–1008.
Google Scholar

[61]

C. Ringel,
The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences,
Math. Z. 208 (1991), no. 2, 209–223.
Google Scholar

[62]

A. Rocha-Caridi,
Splitting criteria for g-modules induced from a parabolic and the Berňstein–Gel’fand–Gel’fand resolution of a finite-dimensional, irreducible $\U0001d524$-module,
Trans. Amer. Math. Soc. 262 (1980), no. 2, 335–366.
Google Scholar

[63]

S. Ryom-Hansen,
Koszul duality of translation- and Zuckerman functors,
J. Lie Theory 14 (2004), no. 1, 151–163.
Google Scholar

[64]

V. Serganova,
A reduction method for atypical representations of classical Lie superalgebras,
Adv. Math. 180 (2003), no. 1, 248–274.
Google Scholar

[65]

W. Soergel,
Kategorie O, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe,
J. Amer. Math. Soc. 3 (1990), no. 2, 421–445.
Google Scholar

[66]

W. Soergel,
Charakterformeln für Kipp-Moduln über Kac–Moody-Algebren,
Represent. Theory 1 (1997), 115–132.
Google Scholar

[67]

C. Stroppel,
Category O: Gradings and translation functors,
J. Algebra 268 (2003), no. 1, 301–326.
Google Scholar

[68]

C. Stroppel,
Category O: Quivers and endomorphism rings of projectives,
Represent. Theory 7 (2003), 322–345.
Google Scholar

[69]

J. L. Verdier,
Des Catégories Dérivées des Catégories Abéliennes,
Astérisque 239,
Société Mathématique de France, Paris, 1996.
Google Scholar

[70]

D. Vogan,
Irreducible characters of semisimple Lie groups. II. The Kazhdan–Lusztig conjectures,
Duke Math. J. 46 (1979), no. 4, 805–859.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.