[1]

U. K. Anandavardhanan, A. C. Kable and R. Tandon,
Distinguished representations and poles of twisted tensor *L*-functions,
Proc. Amer. Math. Soc. 132 (2004), no. 10, 2875–2883.
CrossrefGoogle Scholar

[2]

U. K. Anandavardhanan and C. S. Rajan,
Distinguished representations, base change, and reducibility for unitary groups,
Int. Math. Res. Not. IMRN 14 (2005), 841–854.
Google Scholar

[3]

J. Arthur and L. Clozel,
Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula,
Ann. of Math. Stud. 120,
Princeton University Press, Princeton, 1989.
Google Scholar

[4]

P. Blanc and P. Delorme,
Vecteurs distributions *H*-invariants de représentations induites, pour un espace symétrique réductif *p*-adique $G/H$,
Ann. Inst. Fourier (Grenoble) 58 (2008), no. 1, 213–261.
Google Scholar

[5]

Y. Z. Flicker,
On distinguished representations,
J. Reine Angew. Math. 418 (1991), 139–172.
Google Scholar

[6]

Y. Z. Flicker,
Distinguished representations and a Fourier summation formula,
Bull. Soc. Math. France 120 (1992), no. 4, 413–465.
CrossrefGoogle Scholar

[7]

W. T. Gan, B. H. Gross and D. Prasad,
Symplectic local root numbers, central critical L values, and restriction problems in the representation theory of classical groups,
Sur les conjectures de Gross et Prasad. I,
Astérisque 346,
Société Mathématique de France, Paris (2012), 1–109.
Google Scholar

[8]

D. Goldberg,
Some results on reducibility for unitary groups and local Asai *L*-functions,
J. Reine Angew. Math. 448 (1994), 65–95.
Google Scholar

[9]

M. Gurevich,
On a local conjecture of Jacquet, ladder representations and standard modules,
Math. Z. 281 (2015), no. 3–4, 1111–1127.
Web of ScienceCrossrefGoogle Scholar

[10]

J. Hakim and F. Murnaghan,
Two types of distinguished supercuspidal representations,
Int. Math. Res. Not. IMRN 35 (2002), 1857–1889.
Google Scholar

[11]

M. Harris and R. Taylor,
The Geometry and Cohomology of some Simple Shimura Varieties,
Ann. of Math. Stud. 151,
Princeton University Press, Princeton, 2001.
Google Scholar

[12]

G. Henniart,
Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique,
Invent. Math. 139 (2000), no. 2, 439–455.
CrossrefGoogle Scholar

[13]

H. Jacquet, E. Lapid and J. Rogawski,
Periods of automorphic forms,
J. Amer. Math. Soc. 12 (1999), no. 1, 173–240.
CrossrefGoogle Scholar

[14]

A. C. Kable,
Asai L-functions and Jacquet’s conjecture,
Amer. J. Math. 126 (2004), no. 4, 789–820.
CrossrefGoogle Scholar

[15]

A. Kret and E. Lapid,
Jacquet modules of ladder representations,
C. R. Math. Acad. Sci. Paris 350 (2012), no. 21–22, 937–940.
CrossrefGoogle Scholar

[16]

E. Lapid and A. Mínguez,
On a determinantal formula of Tadić,
Amer. J. Math. 136 (2014), no. 1, 111–142.
CrossrefGoogle Scholar

[17]

E. Lapid and A. Mínguez,
On parabolic induction on inner forms of the general linear group over a non-archimedean local field,
Selecta Math. (N.S.) 22 (2016), no. 4, 2347–2400.
Web of ScienceCrossrefGoogle Scholar

[18]

N. Matringe,
Distinguished generic representations of $\mathrm{GL}(n)$ over *p*-adic fields,
Int. Math. Res. Not. IMRN 1 (2011), 74–95.
Google Scholar

[19]

N. Matringe,
Unitary representations of $\mathrm{GL}(n,K)$ distinguished by a Galois involution, for *K* a *p*-adic field,
Pacific J. Math. 271 (2014), no. 2, 445–460.
Google Scholar

[20]

C. Mœglin and J.-L. Waldspurger,
Sur l’involution de Zelevinski,
J. Reine Angew. Math. 372 (1986), 136–177.
Google Scholar

[21]

C. P. Mok,
Endoscopic classification of representations of quasi-split unitary groups,
Mem. Amer. Math. Soc. 235 (2015), Article ID 1108.
Google Scholar

[22]

D. Prasad,
On a conjecture of Jacquet about distinguished representations of $\mathrm{GL}(n)$,
Duke Math. J. 109 (2001), 67–78.
Google Scholar

[23]

P. Scholze,
The Local Langlands Correspondence for ${\mathrm{GL}}_{n}$ over *p*-adic fields,
Invent. Math. 192 (2013), no. 3, 663–715.
Google Scholar

[24]

M. Tadíc,
Classification of unitary representations in irreducible representations of general linear group (nonArchimedean case),
Ann. Sci. Éc. Norm. Supér. (4) 19 (1986), no. 3, 335–382.
CrossrefGoogle Scholar

[25]

A. V. Zelevinsky,
Induced representations of reductive p-adic groups II. On irreducible representations of GL(n),
Ann. Sci. Éc. Norm. Supér. (4) 13 (1980), 165–210.
CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.