[1]

N. Ackermann,
On a periodic Schrödinger equation with nonlocal superlinear part,
Math. Z. 248 (2004), 423–443.
Google Scholar

[2]

R. A. Adams and L. I. Hedberg,
Function Spaces and Potential Theory,
Grundlehren Math. Wiss. 314,
Springer, Berlin, 1996.
Google Scholar

[3]

A. Ambrosetti and P. H. Rabinowitz,
Dual variational methods in critical point theory and applications,
J. Funct. Anal. 14 (1973), 349–381.
CrossrefGoogle Scholar

[4]

X. Cabré and J. Solà-Morales,
Layers solutions in a half-space for boundary reactions,
Comm. Pure Appl. Math. 58 (2005), 1678–1732.
CrossrefGoogle Scholar

[5]

X. Cabré and J. Tan,
Positive solutions of nonlinear problems involving the square root of the Laplacian,
Adv. Math. 224 (2010), 2052–2093.
CrossrefWeb of ScienceGoogle Scholar

[6]

Y. H. Chen and C. Liu,
Ground state solutions for non-autonomous fractional Choquard equations,
Nonlinearity 29 (2016), 1827–1842.
CrossrefWeb of ScienceGoogle Scholar

[7]

Y. Cho and T. Ozawa,
On the semirelativistic Hartree-type equation,
SIAM J. Math. Anal. 38 (2006), no. 4, 1060–1074.
CrossrefGoogle Scholar

[8]

S. Cingolani, M. Clapp and S. Secchi,
Multiple solutions to a magnetic nonlinear Choquard equation,
Z. Angew. Math. Phys. 63 (2012), 233–248.
Web of ScienceCrossrefGoogle Scholar

[9]

S. Cingolani, M. Clapp and S. Secchi,
Intertwining semiclassical solutions to a Schrödinger–Newton system,
Discrete Contin. Dyn. Syst. Ser. S 6 (2013), 891–908.
Google Scholar

[10]

S. Cingolani and S. Secchi,
Ground states for the pseudo-relativistic Hartree equation with external potential,
Proc. Roy. Soc. Edinburgh Sect. A 145 (2015), 73–90.
CrossrefWeb of ScienceGoogle Scholar

[11]

S. Cingolani and S. Secchi,
Semiclassical analysis for pseudo-relativistic Hartree equations,
J. Differential Equations 258 (2015), 4156–4179.
Web of ScienceCrossrefGoogle Scholar

[12]

S. Cingolani, S. Secchi and M. Squassina,
Semiclassical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities,
Proc. Roy. Soc. Edinburgh Sect. A 140 (2010), 973–1009.
CrossrefGoogle Scholar

[13]

V. Coti Zelati and M. Nolasco,
Existence of ground state for nonlinear, pseudorelativistic Schrödinger equations,
Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 22 (2011), 51–72.
Google Scholar

[14]

V. Coti Zelati and M. Nolasco,
Ground states for pseudo-relativistic Hartree equations of critical type,
Rev. Mat. Iberoam. 29 (2013), 1421–1436.
CrossrefWeb of ScienceGoogle Scholar

[15]

E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker’s guide to the fractional Sobolev spaces,
Bull. Sci. Math. 136 (2012), 521–573.
Web of ScienceCrossrefGoogle Scholar

[16]

A. Elgart, B. and Schlein,
Mean field dynamics of boson stars,
Comm. Pure Appl. Math. 60 (2007), 500–545.
CrossrefGoogle Scholar

[17]

M. M. Fall and V. Felli,
Unique continuation properties for relativistic Schrödinger operators with a singular potential,
Discrete Contin. Dyn. Syst. 35 (2015), no. 12, 5827–5867.
CrossrefGoogle Scholar

[18]

P. Felmer, A. Quaas and J. Tan,
Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian,
Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), 1237–1262.
CrossrefGoogle Scholar

[19]

I. Fonseca and G. Leoni,
Modern Methods in the Calculus of Variations: ${L}^{p}$ Spaces,
Springer, New York, 2007.
Google Scholar

[20]

J. Fröhlich, J. Jonsson and E. Lenzmann,
Boson stars as solitary waves,
Comm. Math. Phys. 274 (2007), 1–30.
CrossrefGoogle Scholar

[21]

J. Fröhlich and E. Lenzmann,
Mean-field limit of quantum Bose gases and nonlinear Hartree equation,
Sémin. Équ. Dériv. 2003–2004 (2004), Exposé No. 18.
Google Scholar

[22]

E. H. Lieb,
Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation,
Stud. Appl. Math. 57 (1977), 93–105.
CrossrefGoogle Scholar

[23]

E. H. Lieb,
Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities,
Ann. of Math. (2) 118 (1983), 349–374.
CrossrefGoogle Scholar

[24]

E. H. Lieb and B. Simon,
The Hartree–Fock theory for Coulomb systems,
Comm. Math. Phys. 53 (1977), 185–194.
CrossrefGoogle Scholar

[25]

P.-L. Lions,
The Choquard equation and related questions,
Nonlinear Anal. 4 (1980), 1063–1073.
CrossrefGoogle Scholar

[26]

L. Ma and L. Zhao,
Classification of positive solitary solutions of the nonlinear Choquard equation,
Arch. Ration. Mech. Anal. 195 (2010), 455–467.
Web of ScienceCrossrefGoogle Scholar

[27]

I. M. Moroz, R. Penrose and P. Tod,
Spherically-symmetric solutions of the Schrödinger–Newton equations,
Classical Quantum Gravity 15 (1998), 2733–2742.
CrossrefGoogle Scholar

[28]

Y. J. Park,
Fractional Gagliardo–Nirenberg inequality,
J. Chungcheong Math. Soc. 24 (2011), no. 3, 583–586.
Google Scholar

[29]

R. Penrose,
Quantum computation, entanglement and state reduction,
R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 356 (1998), 1927–1939.
CrossrefGoogle Scholar

[30]

R. Penrose,
The road to reality. A complete guide to the laws of the universe,
Alfred A. Knopf, New York, 2005.
Google Scholar

[31]

S. Secchi,
A note on Schrödinger–Newton systems with decaying electric potential,
Nonlinear Anal. 72 (2010), 3842–3856.
CrossrefGoogle Scholar

[32]

S. Secchi,
Ground state solutions for nonlinear fractional Schrödinger equations in ${\mathbb{R}}^{N}$,
J. Math. Phys. 54 (2013), no. 3, Article No. 031501.
Google Scholar

[33]

S. Secchi,
On some nonlinear fractional equations involving the Bessel operator,
J. Dynam. Differential Equations (2016), 10.1007/s10884-016-9521-y.
Google Scholar

[34]

S. Secchi,
Concave-convex nonlinearities for some nonlinear fractional equations involving the Bessel operator,
Complex Var. Elliptic Equ. 62 (2017), 10.1080/17476933.2016.1234465.
Web of ScienceGoogle Scholar

[35]

B. Sirakov,
Existence and multiplicity of solutions of semmi-linear elliptic equations in ${\mathbb{R}}^{N}$,
Cal. Var. Partial Differential Equations 11 (2000), 119–142.
Google Scholar

[36]

E. M. Stein,
Singular Integrals and Differentiability Properties of Functions,
Princeton University Press, Princeton, 1970.
Google Scholar

[37]

R. Strichartz,
Analysis of the Laplacian on the complete Riemannian manifold,
J. Funct. Anal. 52 (1983), 48–79.
CrossrefGoogle Scholar

[38]

P. Tod,
The ground state energy of the Schrödinger–Newton equation,
Phys. Lett. A 280 (2001), 173–176.
CrossrefGoogle Scholar

[39]

J. Wei and M. Winter,
Strongly interacting bumps for the Schrödinger–Newton equation,
J. Math. Phys. 50 (2009), Article ID 012905.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.