[1]

J. Almeida,
Implicit operations on finite $\mathcal{\mathcal{J}}$-trivial semigroups and a conjecture of I. Simon,
J. Pure Appl. Algebra 69 (1991), no. 3, 205–218.
Google Scholar

[2]

J. Almeida,
Finite Semigroups and Universal Algebra,
Ser. Algebra 3,
World Scientific, River Edge, 1994.
Google Scholar

[3]

J. Almeida,
Hyperdecidable pseudovarieties and the calculation of semidirect products,
Internat. J. Algebra Comput. 9 (1999), no. 3–4, 241–261,
CrossrefGoogle Scholar

[4]

J. Almeida,
Profinite semigroups and applications,
Structural Theory of Automata, Semigroups and Universal Algebra (Montreal 2003),
Kluwer Academic Publishers, Dordrecht (2005), 1–45.
Google Scholar

[5]

J. Almeida, J. Bartoňová, O. Klíma and M. Kunc,
On decidability of intermediate levels of concatenation hierarchies,
Developments in Language Theory,
Lecture Notes in Comput. Sci. 9168,
Springer, Cham (2015) 58–70.
Google Scholar

[6]

J. Almeida, A. Cano, O. Klíma and J.-E. Pin,
On fixed points of the lower set operator,
Internat. J. Algebra Comput. 25 (2015), no. 1–2, 259–292.
CrossrefGoogle Scholar

[7]

J. Almeida and A. Costa,
Infinite-vertex free profinite semigroupoids and symbolic dynamics,
J. Pure Appl. Algebra 213 (2009), no. 5, 605–631.
Web of ScienceCrossrefGoogle Scholar

[8]

J. Almeida, J. C. Costa and M. Zeitoun,
Iterated periodicity over finite aperiodic semigroups,
European J. Combin. 37 (2014), 115–149.
CrossrefWeb of ScienceGoogle Scholar

[9]

J. Almeida, J. C. Costa and M. Zeitoun,
McCammond’s normal forms for free aperiodic semigroups revisited,
LMS J. Comput. Math. 18 (2015), no. 1, 130–147.
CrossrefWeb of ScienceGoogle Scholar

[10]

J. Almeida, J. C. Costa and M. Zeitoun,
Factoriality and the Pin–Reutenauer procedure,
Discrete Math. Theor. Comput. Sci. 18 (2016), no. 3, Paper No. 1.
Google Scholar

[11]

J. Almeida and B. Steinberg,
On the decidability of iterated semidirect products with applications to complexity,
Proc. Lond. Math. Soc. (3) 80 (2000), no. 1, 50–74.
CrossrefGoogle Scholar

[12]

S. Burris and H. P. Sankappanavar,
A Course in Universal Algebra,
Grad. Texts in Math. 78,
Springer, New York, 1981.
Google Scholar

[13]

R. S. Cohen and J. A. Brzozowski,
Dot-depth of star-free events,
J. Comput. System Sci. 5 (1971), 1–16.
CrossrefGoogle Scholar

[14]

S. Eilenberg,
Automata, Languages, and Machines. Vol. B,
Academic Press, New York, 1976.
Google Scholar

[15]

H. J. Keisler,
Fundamentals of model theory,
Handbook of Mathematical Logic,
Stud. Logic Found. Math. 90,
North Holland, Amsterdam (1977), 47–104.
Google Scholar

[16]

J. P. McCammond,
Normal forms for free aperiodic semigroups,
Internat. J. Algebra Comput. 11 (2001), no. 5, 581–625.
CrossrefGoogle Scholar

[17]

J. D. McKnight, Jr. and A. J. Storey,
Equidivisible semigroups,
J. Algebra 12 (1969), 24–48.
CrossrefGoogle Scholar

[18]

V. Molchanov,
Nonstandard characterization of pseudovarieties,
Algebra Universalis 33 (1995), no. 4, 533–547.
CrossrefGoogle Scholar

[19]

Z.-E. Pèn,
Eilenberg’s theorem for positive varieties of languages,
Izv. Vyssh. Uchebn. Zaved. Mat. (1995), no. 1, 80–90.
Google Scholar

[20]

J.-E. Pin,
Syntactic semigroups,
Handbook of Formal Languages, Vol. 1,
Springer, Berlin (1997), 679–746.
Google Scholar

[21]

J.-E. Pin and P. Weil,
A Reiterman theorem for pseudovarieties of finite first-order structures,
Algebra Universalis 35 (1996), no. 4, 577–595.
CrossrefGoogle Scholar

[22]

J.-E. Pin and P. Weil,
Profinite semigroups, Mal’cev products, and identities,
J. Algebra 182 (1996), no. 3, 604–626.
CrossrefGoogle Scholar

[23]

J.-E. Pin and P. Weil,
Polynomial closure and unambiguous product,
Theory Comput. Syst. 30 (1997), no. 4, 383–422.
CrossrefGoogle Scholar

[24]

T. Place, and M. Zeitoun,
Going higher in the first-order quantifier alternation hierarchy on words,
Automata, Languages, and Programming. Part II (Copenhagen 2014),
Lecture Notes in Comput. Sci. 8573,
Springer, Heidelberg (2014), 342–353.
Google Scholar

[25]

T. Place and M. Zeitoun,
Separating regular languages with first-order logic,
Log. Methods Comput. Sci. 12 (2016), no. 1, Paper No. 5.
Web of ScienceGoogle Scholar

[26]

J. Reiterman,
The Birkhoff theorem for finite algebras,
Algebra Universalis 14 (1982), no. 1, 1–10.
CrossrefGoogle Scholar

[27]

J. Rhodes and B. Steinberg,
The *q*-Theory of Finite Semigroups,
Springer Monogr. Math.,
Springer, New York, 2009.
Google Scholar

[28]

H. Straubing,
A generalization of the Schützenberger product of finite monoids,
Theoret. Comput. Sci. 13 (1981), no. 2, 137–150.
CrossrefGoogle Scholar

[29]

H. Straubing,
Finite semigroup varieties of the form $V\ast D$,
J. Pure Appl. Algebra 36 (1985), no. 1, 53–94.
Google Scholar

[30]

D. Thérien,
Classification of finite monoids: The language approach,
Theoret. Comput. Sci. 14 (1981), no. 2, 195–208.
CrossrefGoogle Scholar

[31]

W. Thomas,
Classifying regular events in symbolic logic,
J. Comput. System Sci. 25 (1982), no. 3, 360–376.
CrossrefGoogle Scholar

[32]

S. J. van Gool and B. Steinberg,
Pro-aperiodic monoids via saturated models,
34th Symposium on Theoretical Aspects of Computer Science (STACS 2017),
LIPIcs. Leibniz Int. Proc. Inform. 66,
Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2017), 39:1–39:14.
Google Scholar

[33]

S. Willard,
General Topology,
Addison-Wesley, Reading, 1970.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.