[1]

P. Ara, M. A. Moreno and E. Pardo,
Nonstable *K*-Theory for graph algebras,
Algebr. Represent. Theory 10 (2007), 157–178.
CrossrefWeb of ScienceGoogle Scholar

[2]

T. Bates and D. Pask,
${C}^{*}$-algebras of labelled graphs. II. Simplicity results,
Math. Scand. 104 (2009), no. 2, 249–274.
Google Scholar

[3]

T. Bates, D. Pask, I. Raeburn and W. Szymański,
The ${C}^{*}$-algebras of row-finite graphs,
New York J. Math. 6 (2000), 307–324.
Google Scholar

[4]

J. Brown, L. O. Clark, C. Farthing and A. Sims,
Simplicity of algebras associated to étale groupoids,
Semigroup Forum 88 (2014), 433–452.
CrossrefWeb of ScienceGoogle Scholar

[5]

J. H. Brown, G. Nagy, S. Reznikoff, A. Sims and D. P. Williams,
Cartan subalgebras in ${C}^{*}$-algebras of Hausdorff étale groupoids,
Integral Equations Operator Theory 85 (2016), 109–126.
Google Scholar

[6]

T. M. Carlsen, E. Ortega and E. Pardo,
${C}^{*}$-algebras associated to Boolean dynamical systems,
J. Math. Anal. Appl. 450 (2017), 727–768.
Web of ScienceGoogle Scholar

[7]

L. O. Clark and C. Edie-Michell,
Uniqueness theorems for Steinberg algebras,
Algebr. Represent. Theory 18 (2015), 907–916.
CrossrefWeb of ScienceGoogle Scholar

[8]

L. O. Clark, C. Edie-Michell, A. an Huef and A. Sims,
Ideals of Steinberg algebras of strongly effective groupoids, with applications to Leavitt path algebras,
preprint (2016), https://arxiv.org/abs/1601.07238.

[9]

L. O. Clark, C. Farthing, A. Sims and M. Tomforde,
A groupoid generalisation of Leavitt path algebras,
Semigroup Forum 89 (2014), 501–517.
Web of ScienceCrossrefGoogle Scholar

[10]

L. O. Clark, C. Gil Canto and A. Nasr-Isfahani,
The cycline subalgebra of a Kumjian–Pask algebra,
Proc. Amer. Math. Soc. 145 (2017), 1969–1980.
Web of ScienceGoogle Scholar

[11]

L. O. Clark, D. Martín Barquero, C. Martín González and M. Siles Molina,
Using Steinberg algebras to study decomposability of Leavitt path algebras,
Forum Math. (2016), 10.1515/forum-2016-0062.
Web of ScienceGoogle Scholar

[12]

R. Exel,
Inverse semigroups and combinatorial ${C}^{*}$-algebras,
Bull. Braz. Math. Soc. 39 (2008), 191–313.
Web of ScienceGoogle Scholar

[13]

R. Exel,
Reconstructing a totally disconnected groupoid from its ample semigroup,
Proc. Amer. Math. Soc. 138 (2008), 2991–3001.
Web of ScienceGoogle Scholar

[14]

R. Exel,
Non-Hausdorff étale groupoids,
Proc. Amer. Math. Soc. 139 (2011), 897–907.
CrossrefGoogle Scholar

[15]

R. Exel and E. Pardo,
The tight groupoid of an inverse semigroup,
Semigroup Forum 92 (2016), 274–303.
CrossrefWeb of ScienceGoogle Scholar

[16]

R. Exel and E. Pardo,
Self-similar graphs, a unified treatment of Katsura and Nekrashevych ${C}^{*}$-algebras,
Adv. Math. 306 (2017), 1046–1129.
Web of ScienceGoogle Scholar

[17]

C. Gil Canto and A. Nasr-Isfahani,
The maximal commutative subalgebra of a Leavitt path algebra,
preprint (2015), https://arxiv.org/abs/1510.03992.

[18]

E. Ortega,
Simple Cuntz–Krieger Boolean algebras,
preprint (2016).

[19]

I. Raeburn,
Graph Algebras,
CBMS Reg. Conf. Ser. Math. 103,
American Mathematical Society, Providence, 2005.
Google Scholar

[20]

J. Renault,
A Groupoid Approach to ${C}^{*}$-Algebra,
Lecture Notes in Math. 793,
Springer, Berlin, 1980.
Google Scholar

[21]

B. Steinberg,
A groupoid approach to discrete inverse semigroup algebras,
Adv. Math. 223 (2010), 689–727.
CrossrefWeb of ScienceGoogle Scholar

[22]

B. Steinberg,
Simplicity, primitivity and semiprimitivity of étale groupoid algebras with applications to inverse semigroup algebras,
J. Pure Appl. Algebra 220 (2016), 1035–1054.
CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.