Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Forum Mathematicum

Managing Editor: Bruinier, Jan Hendrik

Ed. by Cohen, Frederick R. / Droste, Manfred / Darmon, Henri / Duzaar, Frank / Echterhoff, Siegfried / Gordina, Maria / Neeb, Karl-Hermann / Shahidi, Freydoon / Sogge, Christopher D. / Takayama, Shigeharu / Wienhard, Anna


IMPACT FACTOR 2018: 0.867

CiteScore 2018: 0.71

SCImago Journal Rank (SJR) 2018: 0.898
Source Normalized Impact per Paper (SNIP) 2018: 0.964

Mathematical Citation Quotient (MCQ) 2018: 0.71

Online
ISSN
1435-5337
See all formats and pricing
More options …
Volume 30, Issue 3

Issues

Parabolic conformally symplectic structures I; definition and distinguished connections

Andreas ČapORCID iD: http://orcid.org/0000-0002-7745-3708 / Tomáš SalačORCID iD: http://orcid.org/0000-0001-5517-4196
Published Online: 2017-10-03 | DOI: https://doi.org/10.1515/forum-2017-0018

Abstract

We introduce a class of first order G-structures, each of which has an underlying almost conformally symplectic structure. There is one such structure for each real simple Lie algebra which is not of type Cn and admits a contact grading. We show that a structure of each of these types on a smooth manifold M determines a canonical compatible linear connection on the tangent bundle TM. This connection is characterized by a normalization condition on its torsion. The algebraic background for this result is proved using Kostant’s theorem on Lie algebra cohomology. For each type, we give an explicit description of both the geometric structure and the normalization condition. In particular, the torsion of the canonical connection naturally splits into two components, one of which is exactly the obstruction to the underlying structure being conformally symplectic. This article is the first in a series aiming at a construction of differential complexes naturally associated to these geometric structures.

Keywords: Almost conformally symplectic structure; special symplectic connection; exceptional symplectic holonomy; finite order geometric structure; first prolongation; canonical connection

MSC 2010: : 53D15; 53B15; 53C10; 53C15; : 53C29; 53C55

References

  • [1]

    R. L. Bryant, Bochner–Kähler metrics, J. Amer. Math. Soc. 14 (2001), no. 3, 623–715. CrossrefGoogle Scholar

  • [2]

    M. Cahen and L. J. Schwachhöfer, Special symplectic connections, J. Differential Geom. 83 (2009), no. 2, 229–271. CrossrefGoogle Scholar

  • [3]

    D. M. J. Calderbank and T. Diemer, Differential invariants and curved Bernstein–Gelfand–Gelfand sequences, J. Reine Angew. Math. 537 (2001), 67–103. Google Scholar

  • [4]

    A. Čap and T. Salač, Pushing down the Rumin complex to conformally symplectic quotients, Differential Geom. Appl. 35 (2014), 255–265. Web of ScienceCrossrefGoogle Scholar

  • [5]

    A. Čap and T. Salač, Parabolic conformally symplectic structures II; parabolic contactification, preprint (2016), https://arxiv.org/abs/1605.01897.

  • [6]

    A. Čap and T. Salač, Parabolic conformally symplectic structures III; invariant differential operators and complexes, preprint (2017), https://arxiv.org/abs/1701.01306.

  • [7]

    A. Čap and J. Slovák, Parabolic Geometries. I. Background and General Theory, Math. Surveys Monogr. 154, American Mathematical Society, Providence, 2009. Google Scholar

  • [8]

    A. Čap and J. Slovák, and V. Souček, Bernstein–Gelfand–Gelfand sequences, Ann. of Math. (2) 154 (2001), no. 1, 97–113. CrossrefGoogle Scholar

  • [9]

    M. Eastwood and H. Goldschmidt, Zero-energy fields on complex projective space, J. Differential Geom. 94 (2013), no. 1, 129–157. CrossrefGoogle Scholar

  • [10]

    M. Eastwood and J. Slovák, Conformally Fedosov manifolds, preprint (2012), https://arxiv.org/abs/1210.5597.

  • [11]

    A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4) 123 (1980), 35–58. CrossrefGoogle Scholar

  • [12]

    B. Kostant, Lie algebra cohomology and the generalized Borel–Weil theorem, Ann. of Math. (2) 74 (1961), 329–387. CrossrefGoogle Scholar

  • [13]

    S. Merkulov and L. Schwachhöfer, Classification of irreducible holonomies of torsion-free affine connections, Ann. of Math. (2) 150 (1999), no. 1, 77–149. CrossrefGoogle Scholar

  • [14]

    S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, 1964. Google Scholar

About the article


Received: 2017-01-27

Revised: 2017-09-05

Published Online: 2017-10-03

Published in Print: 2018-05-01


Funding Source: Austrian Science Fund

Award identifier / Grant number: P23244-N13

Award identifier / Grant number: P27072-N25

Support by projects P23244-N13 (both authors) and P27072-N25 (first author) of the Austrian Science Fund (FWF) is gratefully acknowledged.


Citation Information: Forum Mathematicum, Volume 30, Issue 3, Pages 733–751, ISSN (Online) 1435-5337, ISSN (Print) 0933-7741, DOI: https://doi.org/10.1515/forum-2017-0018.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Michael Eastwood and Jan Slovák
Advances in Mathematics, 2019, Volume 349, Page 839
[2]
Andreas Čap and Tomáš Salač
Annali di Matematica Pura ed Applicata (1923 -), 2017

Comments (0)

Please log in or register to comment.
Log in