[1]

L. C. Biedenharn, J. D. Louck and P. A. Carruthers
Angular Momentum in Quantum Physics: Theory and application,
Encyclopedia Math. Appl. 8,
Cambridge University Press, Cambridge, 2009.
Google Scholar

[2]

V. Blomer,
Applications of the Kuznetsov formula on $\mathrm{GL}(3)$,
Invent. Math. 194 (2013), no. 3, 673–729.
Google Scholar

[3]

D. Bump,
Automorphic Forms on $\mathrm{GL}(3,\mathbb{R})$,
Lecture Notes in Math. 1083,
Springer, Berlin, 1984.
Google Scholar

[4]

J. Buttcane,
On sums of $\mathrm{SL}(3,\mathbb{Z})$ Kloosterman sums,
Ramanujan J. 32 (2013), no. 3, 371–419.
Google Scholar

[5]

J. Buttcane,
Higher weight on $\mathrm{GL}(3)$. II: The cusp forms,
preprint (2017), https://arxiv.org/abs/1701.04380.

[6]

J. Buttcane,
Kuznetsov, Petersson and Weyl on $\mathrm{GL}(3)$. I: The principal series forms,
preprint (2017), https://arxiv.org/abs/1703.09837.

[7]

J. Buttcane,
Kuznetsov, Petersson and Weyl on $\mathrm{GL}(3)$. II: The generalized principal series forms,
preprint (2017), https://arxiv.org/abs/1706.08816.

[8]

W. Duke, J. B. Friedlander and H. Iwaniec,
The subconvexity problem for Artin *L*-functions,
Invent. Math. 149 (2002), no. 3, 489–577.
CrossrefGoogle Scholar

[9]

D. Goldfeld,
Automorphic Forms and *L*-Functions for the Group $\mathrm{GL}(n,\mathbb{R})$,
Cambridge Stud. Adv. Math. 99,
Cambridge University Press, Cambridge, 2006.
Google Scholar

[10]

I. S. Gradshteyn and I. M. Ryzhik,
Table of Integrals, Series, and Products, 8th ed.,
Elsevier/Academic Press, Amsterdam, 2015.
Google Scholar

[11]

K. Imai and A. Terras,
The Fourier expansion of Eisenstein series for $\mathrm{GL}(3,\mathbb{Z})$,
Trans. Amer. Math. Soc. 273 (1982), no. 2, 679–694.
Google Scholar

[12]

H. Iwaniec and E. Kowalski,
Analytic Number Theory,
Amer. Math. Soc. Colloq. Publ. 53,
American Mathematical Society, Providence, 2004.
Google Scholar

[13]

H. Jacquet,
Fonctions de Whittaker associées aux groupes de Chevalley,
Bull. Soc. Math. France 95 (1967), 243–309.
Google Scholar

[14]

A. W. Knapp,
Lie Groups Beyond an Introduction, 2nd ed.,
Progr. Math. 140,
Birkhäuser, Boston, 2002.
Google Scholar

[15]

R. P. Langlands,
Eisenstein series,
Algebraic Groups and Discontinuous Subgroups (Boulder 1965),
American Mathematical Society, Providence (1966), 235–252.
Google Scholar

[16]

R. P. Langlands,
On the Functional Equations Satisfied by Eisenstein Series,
Lecture Notes in Math. 544,
Springer, Berlin, 1976.
Google Scholar

[17]

H. Manabe, T. Ishii and T. Oda,
Principal series Whittaker functions on $\mathrm{SL}(3,\mathbb{R})$,
Japan. J. Math. (N.S.) 30 (2004), no. 1, 183–226.
Google Scholar

[18]

T. Miyazaki,
The Eisenstein series for $\mathrm{GL}(3,\mathbb{Z})$ induced from cusp forms,
Abh. Math. Semin. Univ. Hambg. 82 (2012), no. 1, 1–41.
Google Scholar

[19]

I. I. Pjateckij-Šapiro,
Euler subgroups,
Lie Groups and Their Representations (Budapest 1971),
Halsted, New York (1975), 597–620.
Google Scholar

[20]

A. Selberg,
Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series,
J. Indian Math. Soc. (N.S.) 20 (1956), 47–87.
Google Scholar

[21]

A. Selberg,
On discontinuous groups in higher-dimensional symmetric spaces,
Contributions to Function Theory (Bombay 1960),
Tata Institute of Fundamental Research, Bombay (1960), 147–164.
Google Scholar

[22]

A. Selberg,
Discontinuous groups and harmonic analysis,
Proceedings of the International Congress of Mathematicians (Stockholm 1962),
Institut Mittag-Leffler, Djursholm (1963), 177–189.
Google Scholar

[23]

F. Shahidi,
Eisenstein Series and Automorphic *L*-Functions,
Amer. Math. Soc. Colloq. Publ. 58,
American Mathematical Society, Providence, 2010.
Google Scholar

[24]

J. A. Shalika,
The multiplicity one theorem for ${\mathrm{GL}}_{n}$,
Ann. of Math. (2) 100 (1974), 171–193.
Google Scholar

[25]

E. Stade,
Mellin transforms of $\mathrm{GL}(n,\mathbb{R})$ Whittaker functions,
Amer. J. Math. 123 (2001), no. 1, 121–161.
Google Scholar

[26]

A. I. Vinogradov and L. A. Tahtadžjan,
Theory of the Eisenstein series for the group $\mathrm{SL}(3,\mathbb{R})$ and its application to a binary problem. I. Fourier expansion of the highest Eisenstein series (in Russian),
Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 76 (1978), 5–52, 216.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.