Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Forum Mathematicum

Managing Editor: Bruinier, Jan Hendrik

Ed. by Cohen, Frederick R. / Droste, Manfred / Darmon, Henri / Duzaar, Frank / Echterhoff, Siegfried / Gordina, Maria / Neeb, Karl-Hermann / Shahidi, Freydoon / Sogge, Christopher D. / Takayama, Shigeharu / Wienhard, Anna


IMPACT FACTOR 2018: 0.867

CiteScore 2018: 0.71

SCImago Journal Rank (SJR) 2018: 0.898
Source Normalized Impact per Paper (SNIP) 2018: 0.964

Mathematical Citation Quotient (MCQ) 2018: 0.71

Online
ISSN
1435-5337
See all formats and pricing
More options …
Volume 30, Issue 3

Issues

Higher weight on GL(3). I: The Eisenstein series

Jack Buttcane
  • Corresponding author
  • Mathematics Department, University at Buffalo – The State University of New York, 244 Mathematics Building, Buffalo, NY 14260, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-20 | DOI: https://doi.org/10.1515/forum-2017-0060

Abstract

The purpose of this paper is to collect and make explicit the results of Langlands [16], Bump [3], Miyazaki [18] and Manabe, Ishii and Oda [17] for the GL(3) Eisenstein series and Whittaker functions which are non-trivial on SO(3,). The final goal for the series of papers is a complete and completely explicit spectral expansion for L2(SL(3,)SL(3,)) in the style of Duke, Friedlander and Iwaniec’s paper [8]. We derive a number of new results on the Whittaker functions and Eisenstein series, and give new, concrete proofs of the functional equations and spectral expansion in place of the general constructions of Langlands.

Keywords: Automorphic forms; non-spherical; ramification at infinity; Eisenstein series; Langlands spectral expansion

MSC 2010: 11F72; 11F30

References

  • [1]

    L. C. Biedenharn, J. D. Louck and P. A. Carruthers Angular Momentum in Quantum Physics: Theory and application, Encyclopedia Math. Appl. 8, Cambridge University Press, Cambridge, 2009. Google Scholar

  • [2]

    V. Blomer, Applications of the Kuznetsov formula on GL(3), Invent. Math. 194 (2013), no. 3, 673–729. Google Scholar

  • [3]

    D. Bump, Automorphic Forms on GL(3,), Lecture Notes in Math. 1083, Springer, Berlin, 1984. Google Scholar

  • [4]

    J. Buttcane, On sums of SL(3,) Kloosterman sums, Ramanujan J. 32 (2013), no. 3, 371–419. Google Scholar

  • [5]

    J. Buttcane, Higher weight on GL(3). II: The cusp forms, preprint (2017), https://arxiv.org/abs/1701.04380.

  • [6]

    J. Buttcane, Kuznetsov, Petersson and Weyl on GL(3). I: The principal series forms, preprint (2017), https://arxiv.org/abs/1703.09837.

  • [7]

    J. Buttcane, Kuznetsov, Petersson and Weyl on GL(3). II: The generalized principal series forms, preprint (2017), https://arxiv.org/abs/1706.08816.

  • [8]

    W. Duke, J. B. Friedlander and H. Iwaniec, The subconvexity problem for Artin L-functions, Invent. Math. 149 (2002), no. 3, 489–577. CrossrefGoogle Scholar

  • [9]

    D. Goldfeld, Automorphic Forms and L-Functions for the Group GL(n,), Cambridge Stud. Adv. Math. 99, Cambridge University Press, Cambridge, 2006. Google Scholar

  • [10]

    I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 8th ed., Elsevier/Academic Press, Amsterdam, 2015. Google Scholar

  • [11]

    K. Imai and A. Terras, The Fourier expansion of Eisenstein series for GL(3,), Trans. Amer. Math. Soc. 273 (1982), no. 2, 679–694. Google Scholar

  • [12]

    H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc. Colloq. Publ. 53, American Mathematical Society, Providence, 2004. Google Scholar

  • [13]

    H. Jacquet, Fonctions de Whittaker associées aux groupes de Chevalley, Bull. Soc. Math. France 95 (1967), 243–309. Google Scholar

  • [14]

    A. W. Knapp, Lie Groups Beyond an Introduction, 2nd ed., Progr. Math. 140, Birkhäuser, Boston, 2002. Google Scholar

  • [15]

    R. P. Langlands, Eisenstein series, Algebraic Groups and Discontinuous Subgroups (Boulder 1965), American Mathematical Society, Providence (1966), 235–252. Google Scholar

  • [16]

    R. P. Langlands, On the Functional Equations Satisfied by Eisenstein Series, Lecture Notes in Math. 544, Springer, Berlin, 1976. Google Scholar

  • [17]

    H. Manabe, T. Ishii and T. Oda, Principal series Whittaker functions on SL(3,), Japan. J. Math. (N.S.) 30 (2004), no. 1, 183–226. Google Scholar

  • [18]

    T. Miyazaki, The Eisenstein series for GL(3,) induced from cusp forms, Abh. Math. Semin. Univ. Hambg. 82 (2012), no. 1, 1–41. Google Scholar

  • [19]

    I. I. Pjateckij-Šapiro, Euler subgroups, Lie Groups and Their Representations (Budapest 1971), Halsted, New York (1975), 597–620. Google Scholar

  • [20]

    A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47–87. Google Scholar

  • [21]

    A. Selberg, On discontinuous groups in higher-dimensional symmetric spaces, Contributions to Function Theory (Bombay 1960), Tata Institute of Fundamental Research, Bombay (1960), 147–164. Google Scholar

  • [22]

    A. Selberg, Discontinuous groups and harmonic analysis, Proceedings of the International Congress of Mathematicians (Stockholm 1962), Institut Mittag-Leffler, Djursholm (1963), 177–189. Google Scholar

  • [23]

    F. Shahidi, Eisenstein Series and Automorphic L-Functions, Amer. Math. Soc. Colloq. Publ. 58, American Mathematical Society, Providence, 2010. Google Scholar

  • [24]

    J. A. Shalika, The multiplicity one theorem for GLn, Ann. of Math. (2) 100 (1974), 171–193. Google Scholar

  • [25]

    E. Stade, Mellin transforms of GL(n,) Whittaker functions, Amer. J. Math. 123 (2001), no. 1, 121–161. Google Scholar

  • [26]

    A. I. Vinogradov and L. A. Tahtadžjan, Theory of the Eisenstein series for the group SL(3,) and its application to a binary problem. I. Fourier expansion of the highest Eisenstein series (in Russian), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 76 (1978), 5–52, 216. Google Scholar

About the article


Received: 2017-03-25

Revised: 2017-08-05

Published Online: 2017-09-20

Published in Print: 2018-05-01


Citation Information: Forum Mathematicum, Volume 30, Issue 3, Pages 681–722, ISSN (Online) 1435-5337, ISSN (Print) 0933-7741, DOI: https://doi.org/10.1515/forum-2017-0060.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Liyang Zhang
Communications in Mathematical Physics, 2019, Volume 369, Number 1, Page 1

Comments (0)

Please log in or register to comment.
Log in