[1]

T. Adachi and S. Maeda,
Some characterizations of quaternionic space forms,
Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), no. 10, 168–172.
CrossrefGoogle Scholar

[2]

J. Berndt,
Über Untermannigfaltigkeiten von komplexen Raumformen,
Ph.D. Thesis, University of Cologne, 1989.
Google Scholar

[3]

J. Berndt,
Real hypersurfaces in quaternionic space forms,
J. Reine Angew. Math. 419 (1991), 9–26.
Google Scholar

[4]

J. Berndt,
Riemannian geometry of complex two-plane Grassmannians,
Rend. Semin. Mat. Univ. Politec. Torino 55 (1997), no. 1, 19–83.
Google Scholar

[5]

J. Berndt,
On homogeneous hypersurfaces in Riemannian symmetric spaces,
Proceedings of the Second International Workshop on Differential Geometry (Taegu 1997),
Kyungpook National University, Taegu (1998), 17–34.
Google Scholar

[6]

A. L. Besse,
Einstein Manifolds,
Ergeb. Math. Grenzgeb. (3) 10,
Springer, Berlin, 1987.
Google Scholar

[7]

E. Boeckx, J. C. González-Dávila and L. Vanhecke,
Energy of radial vector fields on compact rank one symmetric spaces,
Ann. Global Anal. Geom. 23 (2003), no. 1, 29–52.
CrossrefGoogle Scholar

[8]

E. Boeckx and L. Vanhecke,
Harmonic and minimal radial vector fields,
Acta Math. Hungar. 90 (2001), no. 4, 317–331.
CrossrefGoogle Scholar

[9]

J. Bolton,
Transnormal systems,
Quart. J. Math. Oxford Ser. (2) 24 (1973), 385–395.
CrossrefGoogle Scholar

[10]

B.-Y. Choi and J.-W. Yim,
Distributions on Riemannian manifolds, which are harmonic maps,
Tohoku Math. J. (2) 55 (2003), no. 2, 175–188.
CrossrefGoogle Scholar

[11]

O. Gil-Medrano, J. C. González-Dávila and L. Vanhecke,
Harmonicity and minimality of oriented distributions,
Israel J. Math. 143 (2004), 253–279.
CrossrefGoogle Scholar

[12]

J. C. González-Dávila,
Harmonicity and minimality of distributions on Riemannian manifolds via the intrinsic torsion,
Rev. Mat. Iberoam. 30 (2014), no. 1, 247–275.
Web of ScienceCrossrefGoogle Scholar

[13]

J. C. González-Dávila,
Energy of generalized distributions,
Differential Geom. Appl. 49 (2016), 510–528.
CrossrefGoogle Scholar

[14]

J. C. González-Dávila and F. Martín Cabrera,
Harmonic *G*-structures,
Math. Proc. Cambridge Philos. Soc. 146 (2009), no. 2, 435–459.
CrossrefGoogle Scholar

[15]

A. Gray,
Tubes,
Addison-Wesley, Reading, 1990.
Google Scholar

[16]

R. Miyaoka,
Transnormal functions on a Riemannian manifold,
Differential Geom. Appl. 31 (2013), no. 1, 130–139.
CrossrefGoogle Scholar

[17]

P. Molino,
Riemannian Foliations,
Progr. Math. 73,
Birkhäuser, Boston, 1988.
Google Scholar

[18]

K. Niedziałomski,
Geometry of *G*-structures via the intrinsic torsion,
SIGMA Symmetry Integrability Geom. Methods Appl. 12 (2016), Paper No. 107.
Google Scholar

[19]

P. Stefan,
Accessible sets, orbits, and foliations with singularities,
Proc. Lond. Math. Soc. (3) 29 (1974), 699–713.
Google Scholar

[20]

H. J. Sussmann,
Orbits of families of vector fields and integrability of distributions,
Trans. Amer. Math. Soc. 180 (1973), 171–188.
CrossrefGoogle Scholar

[21]

L. Vanhecke,
Geometry in normal and tubular neighborhoods,
Rend. Sem. Fac. Sci. Univ. Cagliari 58 (1988), 73–176.
Google Scholar

[22]

Q. M. Wang,
Isoparametric functions on Riemannian manifolds. I,
Math. Ann. 277 (1987), no. 4, 639–646.
CrossrefGoogle Scholar

[23]

C. M. Wood,
A class of harmonic almost-product structures,
J. Geom. Phys. 14 (1994), no. 1, 25–42.
CrossrefGoogle Scholar

[24]

C. M. Wood,
Harmonic sections of homogeneous fibre bundles,
Differential Geom. Appl. 19 (2003), no. 2, 193–210.
CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.