[1]

S. Aizicovici, N. S. Papageorgiou and V. Staicu,
Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints,
Mem. Amer. Math. Soc. 196 (2008), no. 915, 1–70.
Google Scholar

[2]

S. Aizicovici, N. S. Papageorgiou and V. Staicu,
Nodal solutions for $(p,2)$-equations,
Trans. Amer. Math. Soc. 367 (2015), no. 10, 7343–7372.
Google Scholar

[3]

S. Aizicovici, N. S. Papageorgiou and V. Staicu,
Positive solutions for parametric nonlinear nonhomogeneous Robin problems,
Funkcial. Ekvac., to appear.
Google Scholar

[4]

A. Ambrosetti, H. Brezis and G. Cerami,
Combined effects of concave and convex nonlinearities in some elliptic problems,
J. Funct. Anal. 122 (1994), no. 2, 519–543.
CrossrefGoogle Scholar

[5]

A. Ambrosetti and P. H. Rabinowitz,
Dual variational methods in critical point theory and applications,
J. Funct. Anal. 14 (1973), 349–381.
CrossrefGoogle Scholar

[6]

D. Arcoya and D. Ruiz,
The Ambrosetti–Prodi problem for the *p*-Laplacian operator,
Comm. Partial Differential Equations 31 (2006), no. 4–6, 849–865.
CrossrefGoogle Scholar

[7]

V. Benci, P. D’Avenia, D. Fortunato and L. Pisani,
Solitons in several space dimensions: Derrick’s problem and infinitely many solutions,
Arch. Ration. Mech. Anal. 154 (2000), no. 4, 297–324.
CrossrefGoogle Scholar

[8]

E. Casas and L. A. Fernández,
A Green’s formula for quasilinear elliptic operators,
J. Math. Anal. Appl. 142 (1989), no. 1, 62–73.
CrossrefGoogle Scholar

[9]

L. Cherfils and Y. Ilyasov,
On the stationary solutions of generalized reaction-diffusion equations with $p\&q$ Laplacian,
Commun. Pure Appl. Anal. 4 (2005), 9–22.
Google Scholar

[10]

S. Cingolani and M. Degiovanni,
Nontrivial solutions for *p*-Laplace equations with right-hand side having *p*-linear growth at infinity,
Comm. Partial Differential Equations 30 (2005), no. 7–9, 1191–1203.
CrossrefGoogle Scholar

[11]

J. I. Díaz and J. E. Saá,
Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires,
C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 12, 521–524.
Google Scholar

[12]

M. E. Filippakis and N. S. Papageorgiou,
Multiple constant sign and nodal solutions for nonlinear elliptic equations with the *p*-Laplacian,
J. Differential Equations 245 (2008), no. 7, 1883–1922.
CrossrefWeb of ScienceGoogle Scholar

[13]

M. Fuchs and V. Osmolovski,
Variational integrals on Orlicz–Sobolev spaces,
Z. Anal. Anwend. 17 (1998), no. 2, 393–415.
CrossrefGoogle Scholar

[14]

J. P. García Azorero, I. Peral Alonso and J. J. Manfredi,
Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations,
Commun. Contemp. Math. 2 (2000), no. 3, 385–404.
CrossrefGoogle Scholar

[15]

L. Gasiński and N. S. Papageorgiou,
Nonlinear Analysis,
Ser. Math. Anal. Appl. 9,
Chapman & Hall/CRC, Boca Raton, 2006.
Google Scholar

[16]

L. Gasiński and N. S. Papageorgiou,
Existence and multiplicity of solutions for Neumann *p*-Laplacian-type equations,
Adv. Nonlinear Stud. 8 (2008), no. 4, 843–870.
Google Scholar

[17]

L. Gasiński and N. S. Papageorgiou,
Bifurcation-type results for nonlinear parametric elliptic equations,
Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), no. 3, 595–623.
CrossrefGoogle Scholar

[18]

M. Guedda and L. Véron,
Quasilinear elliptic equations involving critical Sobolev exponents,
Nonlinear Anal. 13 (1989), no. 8, 879–902.
CrossrefGoogle Scholar

[19]

Z. Guo and Z. Zhang,
${W}^{1,p}$ versus ${C}^{1}$ local minimizers and multiplicity results for quasilinear elliptic equations,
J. Math. Anal. Appl. 286 (2003), no. 1, 32–50.
Google Scholar

[20]

S. Hu and N. S. Papageorgiou,
Handbook of Multivalued Analysis. Vol. I: Theory,
Math. Appl. 419,
Kluwer Academic Publishers, Dordrecht, 1997.
Google Scholar

[21]

S. Hu and N. S. Papageorgiou,
Multiplicity of solutions for parametric *p*-Laplacian equations with nonlinearity concave near the origin,
Tohoku Math. J. (2) 62 (2010), no. 1, 137–162.
CrossrefWeb of ScienceGoogle Scholar

[22]

S. Hu and N. S. Papageorgiou,
Nonlinear Neumann equations driven by a nonhomogeneous differential operator,
Commun. Pure Appl. Anal. 10 (2011), no. 4, 1055–1078.
CrossrefWeb of ScienceGoogle Scholar

[23]

N. Kenmochi,
Pseudomonotone operators and nonlinear elliptic boundary value problems,
J. Math. Soc. Japan 27 (1975), 121–149.
CrossrefGoogle Scholar

[24]

G. Li and C. Yang,
The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of *p*-Laplacian type without the Ambrosetti–Rabinowitz condition,
Nonlinear Anal. 72 (2010), no. 12, 4602–4613.
Web of ScienceCrossrefGoogle Scholar

[25]

G. M. Lieberman,
The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations,
Comm. Partial Differential Equations 16 (1991), no. 2–3, 311–361.
CrossrefGoogle Scholar

[26]

D. Motreanu, V. V. Motreanu and N. Papageorgiou,
Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems,
Springer, New York, 2014.
Google Scholar

[27]

D. Mugnai and N. S. Papageorgiou,
Wang’s multiplicity result for superlinear $(p,q)$-equations without the Ambrosetti–Rabinowitz condition,
Trans. Amer. Math. Soc. 366 (2014), no. 9, 4919–4937.
Google Scholar

[28]

N. S. Papageorgiou and V. D. Rădulescu,
Multiple solutions with precise sign for nonlinear parametric Robin problems,
J. Differential Equations 256 (2014), no. 7, 2449–2479.
CrossrefWeb of ScienceGoogle Scholar

[29]

N. S. Papageorgiou and V. D. Rădulescu,
Qualitative phenomena for some classes of quasilinear elliptic equations with multiple resonance,
Appl. Math. Optim. 69 (2014), no. 3, 393–430.
Web of ScienceCrossrefGoogle Scholar

[30]

N. S. Papageorgiou and V. D. Rădulescu,
Bifurcation near infinity for the Robin *p*-Laplacian,
Manuscripta Math. 148 (2015), no. 3–4, 415–433.
Web of ScienceCrossrefGoogle Scholar

[31]

N. S. Papageorgiou and V. D. Rădulescu,
Nonlinear parametric Robin problems with combined nonlinearities,
Adv. Nonlinear Stud. 15 (2015), no. 3, 715–748.
Google Scholar

[32]

N. S. Papageorgiou and V. D. Rădulescu,
Resonant $(p,2)$-equations with asymmetric reaction,
Anal. Appl. (Singap.) 13 (2015), no. 5, 481–506.
Google Scholar

[33]

N. S. Papageorgiou and V. D. Rădulescu,
Solutions with sign information for nonlinear nonhomogeneous elliptic equations,
Topol. Methods Nonlinear Anal. 45 (2015), no. 2, 575–600.
Web of ScienceCrossrefGoogle Scholar

[34]

N. S. Papageorgiou and V. D. Rădulescu,
Infinitely many nodal solutions for nonlinear nonhomogeneous Robin problems,
Adv. Nonlinear Stud. 16 (2016), no. 2, 287–299.
Web of ScienceGoogle Scholar

[35]

N. S. Papageorgiou and V. D. Rădulescu,
Noncoercive resonant $(p,2)$-equations,
Appl. Math. Optim. (2016), 10.1007/s00245-016-9363-3.
Web of ScienceGoogle Scholar

[36]

N. S. Papageorgiou and V. D. Rădulescu,
Nonlinear nonhomogeneous Robin problems with superlinear reaction term,
Adv. Nonlinear Stud. 16 (2016), no. 4, 737–764.
Web of ScienceGoogle Scholar

[37]

N. S. Papageorgiou and V. D. Rădulescu,
Multiplicity theorems for nonlinear nonhomogeneous Robin problems,
Rev. Mat. Iberoam. 33 (2017), no. 1, 251–289.
CrossrefWeb of ScienceGoogle Scholar

[38]

N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovš,
On a class of parametric $(p,2)$-equations,
Appl. Math. Optim. 75 (2017), no. 2, 193–228.
Web of ScienceGoogle Scholar

[39]

N. S. Papageorgiou and G. Smyrlis,
A bifurcation-type theorem for singular nonlinear elliptic equations,
Methods Appl. Anal. 22 (2015), no. 2, 147–170.
Web of ScienceGoogle Scholar

[40]

N. S. Papageorgiou and P. Winkert,
Resonant $(p,2)$-equations with concave terms,
Appl. Anal. 94 (2015), no. 2, 342–360.
Web of ScienceGoogle Scholar

[41]

P. Pucci and J. Serrin,
The Maximum Principle,
Progr. Nonlinear Differential Equations Appl. 73,
Birkhäuser, Basel, 2007.
Google Scholar

[42]

M. Sun, M. Zhang and J. Su,
Critical groups at zero and multiple solutions for a quasilinear elliptic equation,
J. Math. Anal. Appl. 428 (2015), no. 1, 696–712.
CrossrefWeb of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.