[1]

A. Alexandroff,
Zur Theorie der gemischten Volumina von konvexen Körper, I: Verallgemeinerung einiger Begriffe der Theorie von konvexen Körper,
Mat. Sb. 2 (1937), 947–972.
Google Scholar

[2]

G. Berck,
Convexity of ${L}_{p}$-intersection bodies,
Adv. Math. 222 (2009), no. 3, 920–936.
Web of ScienceGoogle Scholar

[3]

H. Busemann and E. G. Straus,
Area and normality,
Pacific J. Math. 10 (1960), 35–72.
CrossrefGoogle Scholar

[4]

F. Chen and G. Leng,
Orlicz–Brunn–Minkowski inequalities for Blaschke–Minkowski homomorphisms,
Geom. Dedicata 187 (2017), 137–149.
CrossrefGoogle Scholar

[5]

W. Fenchel and B. Jessen,
Mengenfunktionen und konvexe Körper,
Danske Vid. Selsk. Mat. Fys. Medd. 16 (1938), 1–31.
Google Scholar

[6]

W. J. Firey,
Polar means of convex bodies and a dual to the Brunn–Minkowski theorem,
Canad. J. Math. 13 (1961), 444–453.
CrossrefGoogle Scholar

[7]

R. J. Gardner,
A positive answer to the Busemann–Petty problem in three dimensions,
Ann. of Math. (2) 140 (1994), no. 2, 435–447.
CrossrefGoogle Scholar

[8]

R. J. Gardner,
Geometric Tomography,
Encyclopedia Math. Appl. 58,
Cambridge University Press, Cambridge, 1995.
Google Scholar

[9]

R. J. Gardner,
The Brunn–Minkowski inequality,
Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 3, 355–405.
CrossrefGoogle Scholar

[10]

R. J. Gardner,
The dual Brunn–Minkowski theory for bounded Borel sets: Dual affine quermassintegrals and inequalities,
Adv. Math. 216 (2007), no. 1, 358–386.
Web of ScienceCrossrefGoogle Scholar

[11]

R. J. Gardner, D. Hug and W. Weil,
Operations between sets in geometry,
J. Eur. Math. Soc. (JEMS) 15 (2013), no. 3, 2297–2352.
CrossrefGoogle Scholar

[12]

R. J. Gardner, D. Hug and W. Weil,
The Orlicz–Brunn–Minkowski theory: A general framework, additions, and inequalities,
J. Differential Geom. 97 (2014), no. 3, 427–476.
CrossrefGoogle Scholar

[13]

R. J. Gardner, D. Hug, W. Weil and D. Ye,
The dual Orlicz–Brunn–Minkowski theory,
J. Math. Anal. Appl. 430 (2015), no. 2, 810–829.
CrossrefWeb of ScienceGoogle Scholar

[14]

R. J. Gardner, A. Koldobsky and T. Schlumprecht,
An analytic solution to the Busemann–Petty problem on sections of convex bodies,
Ann. of Math. (2) 149 (1999), no. 2, 691–703.
CrossrefGoogle Scholar

[15]

E. Grinberg,
Isoperimetric inequalities and identities for *k*-dimensional cross-sections of convex bodies,
Math. Ann. 291 (1991), no. 1, 75–86.
CrossrefGoogle Scholar

[16]

E. Grinberg and G. Zhang,
Convolutions, transforms, and convex bodies,
Proc. Lond. Math. Soc. (3) 78 (1999), no. 1, 77–115.
CrossrefGoogle Scholar

[17]

C. Haberl,
${L}_{p}$ intersection bodies,
Adv. Math. 217 (2008), no. 6, 2599–2624.
Web of ScienceGoogle Scholar

[18]

C. Haberl and M. Ludwig,
A characterization of ${L}_{p}$ intersection bodies,
Int. Math. Res. Not. IMRN 2006 (2006), Article ID 10548.
Google Scholar

[19]

C. Haberl, E. Lutwak, D. Yang and G. Zhang,
The even Orlicz Minkowski problem,
Adv. Math. 224 (2010), no. 6, 2485–2510.
CrossrefWeb of ScienceGoogle Scholar

[20]

J. Hoffmann-Jø rgensen,
Probability with a View Toward Statistics. Vol 1: Probabilities,
Chapman & Hall, London, 1994.
Google Scholar

[21]

Q. Huang and B. He,
On the Orlicz Minkowski problem for polytopes,
Discrete Comput. Geom. 48 (2012), no. 2, 281–297.
CrossrefWeb of ScienceGoogle Scholar

[22]

Y. Jun and G. Leng,
Inequalities for dual affine quermassintegrals,
J. Inequal. Appl. 2006 (2006), Article ID 50181.
Google Scholar

[23]

M. A. Krasnosel’skiĭ and J. B. Rutickiĭ,
Convex Functions and Orlicz Spaces,
P. Noordhoff, Groningen, 1961.
Google Scholar

[24]

E. Lutwak,
A general isepiphanic inequality,
Proc. Amer. Math. Soc. 90 (1984),
451–421.
Web of ScienceGoogle Scholar

[25]

E. Lutwak,
Dual mixed volumes,
Pacific J. Math. 58 (1975), no. 2, 531–538.
CrossrefGoogle Scholar

[26]

E. Lutwak,
Inequalities for Hadwiger’s harmonic Quermassintegrals,
Math. Ann. 280 (1988), no. 1, 165–175.
CrossrefGoogle Scholar

[27]

E. Lutwak,
Intersection bodies and dual mixed volumes,
Adv. Math. 71 (1988), no. 2, 232–261.
CrossrefGoogle Scholar

[28]

E. Lutwak,
The Brunn–Minkowski–Firey theory. I. Mixed volumes and the Minkowski problem,
J. Differential Geom. 38 (1993), no. 1, 131–150.
CrossrefGoogle Scholar

[29]

E. Lutwak,
The Brunn–Minkowski–Firey theory. II. Affine and geominimal surface areas,
Adv. Math. 118 (1996), no. 2, 244–294.
CrossrefGoogle Scholar

[30]

E. Lutwak, D. Yang and G. Zhang,
Orlicz centroid bodies,
J. Differential Geom. 84 (2010), no. 2, 365–387.
CrossrefGoogle Scholar

[31]

E. Lutwak, D. Yang and G. Zhang,
Orlicz projection bodies,
Adv. Math. 223 (2010), no. 1, 220–242.
CrossrefWeb of ScienceGoogle Scholar

[32]

M. M. Rao and Z. D. Ren,
Theory of Orlicz Spaces,
Monogr. Textb. Pure Appl. Math. 146,
Marcel Dekker, New York, 1991.
Google Scholar

[33]

R. Schneider,
Convex Bodies: The Brunn–Minkowski theory, expanded ed.,
Encyclopedia Math. Appl. 151,
Cambridge University Press, Cambridge, 2014.
Google Scholar

[34]

F. E. Schuster,
Valuations and Busemann–Petty type problems,
Adv. Math. 219 (2008), no. 1, 344–368.
CrossrefWeb of ScienceGoogle Scholar

[35]

E. M. Werner,
Rényi divergence and ${L}_{p}$-affine surface area for convex bodies,
Adv. Math. 230 (2012), no. 3, 1040–1059.
Google Scholar

[36]

D. Xi, H. Jin and G. Leng,
The Orlicz Brunn–Minkowski inequality,
Adv. Math. 260 (2014), 350–374.
Web of ScienceCrossrefGoogle Scholar

[37]

G. Zhang,
A positive solution to the Busemann–Petty problem in ${\mathbf{R}}^{4}$,
Ann. of Math. (2) 149 (1999), no. 2, 535–543.
Google Scholar

[38]

C.-J. Zhao,
Orlicz dual mixed volumes,
Results Math. 68 (2015), no. 1–2, 93–104.
Web of ScienceCrossrefGoogle Scholar

[39]

C.-J. Zhao,
On the Orlicz–Brunn–Minkowski theory,
Balkan J. Geom. Appl. 22 (2017), no. 1, 98–121.
Google Scholar

[40]

B. Zhu, J. Zhou and W. Xu,
Dual Orlicz–Brunn–Minkowski theory,
Adv. Math. 264 (2014), 700–725.
Web of ScienceCrossrefGoogle Scholar

[41]

G. Zhu,
The Orlicz centroid inequality for star bodies,
Adv. Appl. Math. 48 (2012), no. 2, 432–445.
CrossrefWeb of ScienceGoogle Scholar

[42]

D. Zou,
Affine extremum problems in the Orlicz Brunn–Minkowski theory (in Chinese),
Ph.D. thesis, Shanghai University, Shanghai, 2015.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.