[1]

V. I. Arnol’d,
The cohomology ring of the group of dyed braids,
Mat. Zametki 5 (1969), 227–231.
Google Scholar

[2]

G. Arone and V. Turchin,
On the rational homology of high-dimensional analogues of spaces of long knots,
Geom. Topol. 18 (2014), no. 3, 1261–1322.
CrossrefGoogle Scholar

[3]

G. Arone and V. Turchin,
Graph-complexes computing the rational homotopy of high dimensional analogues of spaces of long knots,
Ann. Inst. Fourier (Grenoble) 65 (2015), no. 1, 1–62.
CrossrefGoogle Scholar

[4]

D. Bar-Natan,
Vassiliev homotopy string link invariants,
J. Knot Theory Ramifications 4 (1995), no. 1, 13–32.
CrossrefGoogle Scholar

[5]

P. Boavida de Brito and M. Weiss,
Spaces of smooth embeddings and configuration categories,
preprint (2015), https://arxiv.org/abs/1502.01640;
to appear in J. Topol.

[6]

A. J. Casson,
Link cobordism and Milnor’s invariant,
Bull. Lond. Math. Soc. 7 (1975), 39–40.
CrossrefGoogle Scholar

[7]

A. S. Cattaneo, P. Cotta-Ramusino and R. Longoni,
Algebraic structures on graph cohomology,
J. Knot Theory Ramifications 14 (2005), no. 5, 627–640.
CrossrefGoogle Scholar

[8]

S. Chmutov, S. Duzhin and J. Mostovoy,
Introduction to Vassiliev Knot Invariants,
Cambridge University Press, Cambridge, 2012.
Google Scholar

[9]

F. R. Cohen, R. Komendarczyk and C. Shonkwiler,
Homotopy Brunnian links and the κ-invariant,
Proc. Amer. Math. Soc. 143 (2015), no. 3, 1347–1362.
Google Scholar

[10]

F. R. Cohen, T. J. Lada and J. P. May,
The Homology of Iterated Loop Spaces,
Lecture Notes in Math. 533,
Springer, Berlin, 1976.
Google Scholar

[11]

J. Conant, M. Kassabov and K. Vogtmann,
Higher hairy graph homology,
Geom. Dedicata 176 (2015), 345–374.
CrossrefGoogle Scholar

[12]

J. Conant, R. Schneiderman and P. Teichner,
Tree homology and a conjecture of Levine,
Geom. Topol. 16 (2012), no. 1, 555–600.
CrossrefGoogle Scholar

[13]

D. Crowley, S. C. Ferry and M. Skopenkov,
The rational classification of links of codimension $\text{}2$,
Forum Math. 26 (2014), no. 1, 239–269.
Google Scholar

[14]

J. Ducoulombier and V. Turchin,
Delooping the manifold calculus tower for closed discs,
preprint (2017), https://arxiv.org/abs/1708.02203.

[15]

W. Dwyer and K. Hess,
Long knots and maps between operads,
Geom. Topol. 16 (2012), no. 2, 919–955.
CrossrefGoogle Scholar

[16]

W. Dwyer and K. Hess,
A delooping of the space of string links,
preprint (2015), https://arxiv.org/abs/1501.00575.

[17]

W. Dwyer and K. Hess,
Delooping the space of long embeddings,
to appear.

[18]

B. Fresse,
Modules Over Operads and Functors,
Lecture Notes in Math. 1967,
Springer, Berlin, 2009.
Google Scholar

[19]

B. Fresse, V. Turchin and T. Willwacher,
The rational homotopy of mapping spaces of ${E}_{n}$ operads,
preprint (2017), https://arxiv.org/abs/1703.06123.

[20]

E. Getzler and M. Kapranov,
Cyclic operads and cyclic homology,
Geometry, Topology and Physics for Raoul Bott,
Conf. Proc. Lecture Notes Geom. Topol. 4,
International Press, Cambridge (1995), 167–201.
Google Scholar

[21]

E. Getzler and M. M. Kapranov,
Modular operads,
Compos. Math. 110 (1998), no. 1, 65–126.
CrossrefGoogle Scholar

[22]

T. G. Goodwillie and J. R. Klein,
Multiple disjunction for spaces of smooth embeddings,
J. Topol. 8 (2015), no. 3, 651–674.
CrossrefGoogle Scholar

[23]

T. G. Goodwillie and M. Weiss,
Embeddings from the point of view of immersion theory. II,
Geom. Topol. 3 (1999), 103–118.
CrossrefGoogle Scholar

[24]

N. Habegger and G. Masbaum,
The Kontsevich integral and Milnor’s invariants,
Topology 39 (2000), no. 6, 1253–1289.
CrossrefGoogle Scholar

[25]

N. Habegger and W. Pitsch,
Tree level Lie algebra structures of perturbative invariants,
J. Knot Theory Ramifications 12 (2003), no. 3, 333–345.
CrossrefGoogle Scholar

[26]

A. Haefliger,
Knotted $(4k-1)$-spheres in $6k$-space,
Ann. of Math. (2) 75 (1962), 452–466.
Google Scholar

[27]

A. Haefliger,
Enlacements de sphères en codimension supérieure à 2,
Comment. Math. Helv. 41 (1966/1967), 51–72.
CrossrefGoogle Scholar

[28]

V. Hinich and A. Vaintrob,
Cyclic operads and algebra of chord diagrams,
Selecta Math. (N.S.) 8 (2002), no. 2, 237–282.
CrossrefGoogle Scholar

[29]

M. Hovey,
Model Categories,
Math. Surveys Monogr. 63,
American Mathematical Society, Providence, 1999.
Google Scholar

[30]

U. Koschorke,
A generalization of Milnor’s μ-invariants to higher-dimensional link maps,
Topology 36 (1997), no. 2, 301–324.
CrossrefGoogle Scholar

[31]

P. Lambrechts and I. Volić,
Formality of the little *N*-disks operad,
Mem. Amer. Math. Soc. 1079 (2014), 1–116.
Google Scholar

[32]

J. Levine,
Addendum and correction to: “Homology cylinders: an enlargement of the mapping class group” [Algebr. Geom. Topol. **1** (2001), 243–270],
Algebr. Geom. Topol. 2 (2002), 1197–1204.
CrossrefGoogle Scholar

[33]

J.-L. Loday and B. Vallette,
Algebraic Operads,
Grundlehren Math. Wiss. 346,
Springer, Heidelberg, 2012.
Google Scholar

[34]

R. Longoni,
Nontrivial classes in ${H}^{*}(\mathrm{Imb}({S}^{1},{\mathbb{R}}^{n}))$ from nontrivalent graph cocycles,
Int. J. Geom. Methods Mod. Phys. 1 (2004), no. 5, 639–650.
Google Scholar

[35]

M. Markl,
Loop homotopy algebras in closed string field theory,
Comm. Math. Phys. 221 (2001), no. 2, 367–384.
CrossrefGoogle Scholar

[36]

B. A. Munson,
Derivatives of the identity and generalizations of Milnor’s invariants,
J. Topol. 4 (2011), no. 2, 383–405.
CrossrefGoogle Scholar

[37]

B. A. Munson and I. Volić,
Multivariable manifold calculus of functors,
Forum Math. 24 (2012), no. 5, 1023–1066.
Google Scholar

[38]

B. A. Munson and I. Volić,
Cosimplicial models for spaces of links,
J. Homotopy Relat. Struct. 9 (2014), no. 2, 419–454.
CrossrefGoogle Scholar

[39]

K. E. Pelatt and D. P. Sinha,
A geometric homology representative in the space of knots,
Manifolds and *K*-Theory,
Contemp. Math. 682,
American Mathematical Society, Providence (2017), 167–188.
Google Scholar

[40]

T. Pirashvili,
Dold-Kan type theorem for Γ-groups,
Math. Ann. 318 (2000), no. 2, 277–298.
CrossrefGoogle Scholar

[41]

T. Pirashvili,
Hodge decomposition for higher order Hochschild homology,
Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 2, 151–179.
CrossrefGoogle Scholar

[42]

K. Sakai,
Configuration space integrals for embedding spaces and the Haefliger invariant,
J. Knot Theory Ramifications 19 (2010), no. 12, 1597–1644.
CrossrefGoogle Scholar

[43]

K. Sakai and T. Watanabe,
1-loop graphs and configuration space integral for embedding spaces,
Math. Proc. Cambridge Philos. Soc. 152 (2012), no. 3, 497–533.
CrossrefGoogle Scholar

[44]

D. Sinha,
A pairing between graphs and trees,
preprint (2005), https://arxiv.org/abs/math/0502547.

[45]

P. A. Songhafouo Tsopméné,
The rational homology of spaces of long links,
Algebr. Geom. Topol. 16 (2016), no. 2, 757–782.
CrossrefGoogle Scholar

[46]

P. A. Songhafouo Tsopméné and V. Turchin,
Euler characteristics for spaces of string links and the modular envelope of ${\mathcal{\mathcal{L}}}_{\mathrm{\infty}}$,
preprint (2016), https://arxiv.org/abs/1609.00778;
to appear in Homology Homotopy Appl.

[47]

V. Turchin,
Hodge-type decomposition in the homology of long knots,
J. Topol. 3 (2010), no. 3, 487–534.
CrossrefGoogle Scholar

[48]

V. Turchin,
Delooping totalization of a multiplicative operad,
J. Homotopy Relat. Struct. 9 (2014), no. 2, 349–418.
CrossrefGoogle Scholar

[49]

V. Turchin and T. Willwacher,
Relative (non-)formality of the little cubes operads and the algebraic Cerf lemma,
preprint (2014), https://arxiv.org/abs/1409.0163;
to appear in Amer. J. Math.

[50]

V. Turchin and T. Willwacher,
Hochschild–Pirashvili homology on suspensions and representations of $\mathrm{Out}({F}_{n})$,
preprint (2015), https://arxiv.org/abs/1507.08483;
to appear in Ann. Sci. Éc. Norm. Supér.

[51]

I. Volić,
On the cohomology of spaces of links and braids via configuration space integrals,
Sarajevo J. Math. 6(19) (2010), no. 2, 241–263.
Google Scholar

[52]

M. Weiss,
Embeddings from the point of view of immersion theory. I,
Geom. Topol. 3 (1999), 67–101.
CrossrefGoogle Scholar

[53]

M. S. Weiss,
Homology of spaces of smooth embeddings,
Q. J. Math. 55 (2004), no. 4, 499–504.
CrossrefGoogle Scholar

[54]

S. Whitehouse,
Gamma homology of commutative algebras and some related representations of the symmetric group,
PhD Thesis, Warwick University, 1994.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.