Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Forum Mathematicum

Managing Editor: Bruinier, Jan Hendrik

Ed. by Cohen, Frederick R. / Droste, Manfred / Darmon, Henri / Duzaar, Frank / Echterhoff, Siegfried / Gordina, Maria / Neeb, Karl-Hermann / Shahidi, Freydoon / Sogge, Christopher D. / Takayama, Shigeharu / Wienhard, Anna


IMPACT FACTOR 2018: 0.867

CiteScore 2018: 0.71

SCImago Journal Rank (SJR) 2018: 0.898
Source Normalized Impact per Paper (SNIP) 2018: 0.964

Mathematical Citation Quotient (MCQ) 2017: 0.67

Online
ISSN
1435-5337
See all formats and pricing
More options …
Volume 30, Issue 5

Issues

Upper bounds for geodesic periods over rank one locally symmetric spaces

Jan FrahmORCID iD: http://orcid.org/0000-0003-4174-5933 / Feng SuORCID iD: http://orcid.org/0000-0002-4867-5897
Published Online: 2018-01-13 | DOI: https://doi.org/10.1515/forum-2017-0185

Abstract

We prove upper bounds for geodesic periods of automorphic forms over general rank one locally symmetric spaces. Such periods are integrals of automorphic forms restricted to special totally geodesic cycles of the ambient manifold and twisted with automorphic forms on the cycles. The upper bounds are in terms of the Laplace eigenvalues of the two automorphic forms, and they generalize previous results for real hyperbolic manifolds to the context of all rank one locally symmetric spaces.

Keywords: Locally symmetric spaces; automorphic forms; geodesic periods; totally geodesic cycles; unitary representations; reductive Lie groups

MSC 2010: 11F70; 22E46; 53C35

References

  • [1]

    G. E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia Math. Appl. 71, Cambridge University Press, Cambridge, 1999. Google Scholar

  • [2]

    J. Bernstein and A. Reznikov, Estimates of automorphic functions, Mosc. Math. J. 4 (2004), no. 1, 19–37, 310. Google Scholar

  • [3]

    J. Bernstein and A. Reznikov, Periods, subconvexity of L-functions and representation theory, J. Differential Geom. 70 (2005), no. 1, 129–141. CrossrefGoogle Scholar

  • [4]

    J. Bernstein and A. Reznikov, Subconvexity bounds for triple L-functions and representation theory, Ann. of Math. (2) 172 (2010), no. 3, 1679–1718. CrossrefWeb of ScienceGoogle Scholar

  • [5]

    N. Burq, P. Gérard and N. Tzvetkov, Restrictions of the Laplace–Beltrami eigenfunctions to submanifolds, Duke Math. J. 138 (2007), no. 3, 445–486. CrossrefWeb of ScienceGoogle Scholar

  • [6]

    M. Cowling, Unitary and uniformly bounded representations of some simple Lie groups, Harmonic Analysis and Group Representations, Liguori, Naples (1982), 49–128. Google Scholar

  • [7]

    M. Cowling and U. Haagerup, Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one, Invent. Math. 96 (1989), no. 3, 507–549. CrossrefGoogle Scholar

  • [8]

    A. Deitmar, Invariant triple products, Int. J. Math. Math. Sci. 2006 (2006), Article ID 48274. Google Scholar

  • [9]

    A. Deitmar, Fourier expansion along geodesics on Riemann surfaces, Cent. Eur. J. Math. 12 (2014), no. 4, 559–573. Web of ScienceGoogle Scholar

  • [10]

    I. M. Gel’fand, M. I. Graev and I. I. Pyatetskii-Shapiro, Representation Theory and Automorphic Functions, W. B. Saunders, Philadelphia, 1969. Google Scholar

  • [11]

    I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th ed., Elsevier, Amsterdam, 2007. Google Scholar

  • [12]

    F. Knop, B. Krötz, T. Pecher and H. Schlichtkrull, Classification of reductive real spherical pairs II. The semisimple case, preprint (2017), https://arxiv.org/abs/1703.08048.

  • [13]

    T. Kobayashi and B. Speh, Symmetry breaking for representations of rank one orthogonal groups, Mem. Amer. Math. Soc. 238 (2015), no. 1126, 1–110. Google Scholar

  • [14]

    J. Möllers and B. Ørsted, Estimates for the restriction of automorphic forms on hyperbolic manifolds to compact geodesic cycles, Int. Math. Res. Not. IMRN 2017 (2017), no. 11, 3209–3236. Google Scholar

  • [15]

    J. Möllers, B. Ørsted and Y. Oshima, Knapp–Stein type intertwining operators for symmetric pairs, Adv. Math. 294 (2016), 256–306. Web of ScienceCrossrefGoogle Scholar

  • [16]

    J. Möllers and F. Su, The second moment of period integrals and Rankin–Selberg L-functions for GL(3)×GL(2), preprint (2017), https://arxiv.org/abs/1706.05167.

  • [17]

    A. Reznikov, Rankin–Selberg without unfolding and bounds for spherical Fourier coefficients of Maass forms, J. Amer. Math. Soc. 21 (2008), no. 2, 439–477. Google Scholar

  • [18]

    A. Reznikov, A uniform bound for geodesic periods of eigenfunctions on hyperbolic surfaces, Forum Math. 27 (2015), no. 3, 1569–1590. Web of ScienceGoogle Scholar

  • [19]

    F. Su, Upper bounds for geodesic periods over hyperbolic manifolds, preprint (2016), https://arxiv.org/abs/1605.02999.

  • [20]

    S. Zelditch, Kuznecov sum formulae and Szegö limit formulae on manifolds, Comm. Partial Differential Equations 17 (1992), no. 1–2, 221–260. CrossrefGoogle Scholar

About the article


Received: 2017-09-04

Revised: 2017-11-29

Published Online: 2018-01-13

Published in Print: 2018-09-01


Citation Information: Forum Mathematicum, Volume 30, Issue 5, Pages 1065–1077, ISSN (Online) 1435-5337, ISSN (Print) 0933-7741, DOI: https://doi.org/10.1515/forum-2017-0185.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in