[1]

G. E. Andrews, R. Askey and R. Roy,
Special Functions,
Encyclopedia Math. Appl. 71,
Cambridge University Press, Cambridge, 1999.
Google Scholar

[2]

J. Bernstein and A. Reznikov,
Estimates of automorphic functions,
Mosc. Math. J. 4 (2004), no. 1, 19–37, 310.
Google Scholar

[3]

J. Bernstein and A. Reznikov,
Periods, subconvexity of *L*-functions and representation theory,
J. Differential Geom. 70 (2005), no. 1, 129–141.
CrossrefGoogle Scholar

[4]

J. Bernstein and A. Reznikov,
Subconvexity bounds for triple *L*-functions and representation theory,
Ann. of Math. (2) 172 (2010), no. 3, 1679–1718.
CrossrefWeb of ScienceGoogle Scholar

[5]

N. Burq, P. Gérard and N. Tzvetkov,
Restrictions of the Laplace–Beltrami eigenfunctions to submanifolds,
Duke Math. J. 138 (2007), no. 3, 445–486.
CrossrefWeb of ScienceGoogle Scholar

[6]

M. Cowling,
Unitary and uniformly bounded representations of some simple Lie groups,
Harmonic Analysis and Group Representations,
Liguori, Naples (1982), 49–128.
Google Scholar

[7]

M. Cowling and U. Haagerup,
Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one,
Invent. Math. 96 (1989), no. 3, 507–549.
CrossrefGoogle Scholar

[8]

A. Deitmar,
Invariant triple products,
Int. J. Math. Math. Sci. 2006 (2006), Article ID 48274.
Google Scholar

[9]

A. Deitmar,
Fourier expansion along geodesics on Riemann surfaces,
Cent. Eur. J. Math. 12 (2014), no. 4, 559–573.
Web of ScienceGoogle Scholar

[10]

I. M. Gel’fand, M. I. Graev and I. I. Pyatetskii-Shapiro,
Representation Theory and Automorphic Functions,
W. B. Saunders, Philadelphia, 1969.
Google Scholar

[11]

I. S. Gradshteyn and I. M. Ryzhik,
Table of Integrals, Series, and Products, 7th ed.,
Elsevier, Amsterdam, 2007.
Google Scholar

[12]

F. Knop, B. Krötz, T. Pecher and H. Schlichtkrull,
Classification of reductive real spherical pairs II. The semisimple case,
preprint (2017), https://arxiv.org/abs/1703.08048.

[13]

T. Kobayashi and B. Speh,
Symmetry breaking for representations of rank one orthogonal groups,
Mem. Amer. Math. Soc. 238 (2015), no. 1126, 1–110.
Google Scholar

[14]

J. Möllers and B. Ørsted,
Estimates for the restriction of automorphic forms on hyperbolic manifolds to compact geodesic cycles,
Int. Math. Res. Not. IMRN 2017 (2017), no. 11, 3209–3236.
Google Scholar

[15]

J. Möllers, B. Ørsted and Y. Oshima,
Knapp–Stein type intertwining operators for symmetric pairs,
Adv. Math. 294 (2016), 256–306.
Web of ScienceCrossrefGoogle Scholar

[16]

J. Möllers and F. Su,
The second moment of period integrals and Rankin–Selberg L-functions for $\mathrm{GL}(3)\times \mathrm{GL}(2)$,
preprint (2017), https://arxiv.org/abs/1706.05167.

[17]

A. Reznikov,
Rankin–Selberg without unfolding and bounds for spherical Fourier coefficients of Maass forms,
J. Amer. Math. Soc. 21 (2008), no. 2, 439–477.
Google Scholar

[18]

A. Reznikov,
A uniform bound for geodesic periods of eigenfunctions on hyperbolic surfaces,
Forum Math. 27 (2015), no. 3, 1569–1590.
Web of ScienceGoogle Scholar

[19]

F. Su,
Upper bounds for geodesic periods over hyperbolic manifolds,
preprint (2016), https://arxiv.org/abs/1605.02999.

[20]

S. Zelditch,
Kuznecov sum formulae and Szegö limit formulae on manifolds,
Comm. Partial Differential Equations 17 (1992), no. 1–2, 221–260.
CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.