[1]

B. Baeumer and M. M. Meerschaert,
Stochastic solutions for fractional Cauchy problems,
Fract. Calc. Appl. Anal. 4 (2001), no. 4, 481–500.
Google Scholar

[2]

M. T. Barlow and J. Černý,
Convergence to fractional kinetics for random walks associated with unbounded conductances,
Probab. Theory Related Fields 149 (2011), no. 3–4, 639–673.
Web of ScienceCrossrefGoogle Scholar

[3]

D. Brockmann, L. Hufnagel and T. Geisel,
The scaling laws of human travel,
Nature 439 (2006), 462–465.
CrossrefGoogle Scholar

[4]

J. Černý,
On two-dimensional random walk among heavy-tailed conductances,
Electron. J. Probab. 16 (2011), no. 10, 293–313.
CrossrefGoogle Scholar

[5]

Z.-Q. Chen,
Time fractional equations and probabilistic representation,
Chaos Solitons Fractals 102 (2017), 168–174.
CrossrefWeb of ScienceGoogle Scholar

[6]

Z.-Q. Chen and M. Fukushima,
Symmetric Markov Processes, Time Change, and Boundary Theory,
London Math. Soc. Monogr. Ser. 35,
Princeton University Press, Princeton, 2012.
Google Scholar

[7]

Z.-Q. Chen and T. Kumagai,
Heat kernel estimates for jump processes of mixed types on metric measure spaces,
Probab. Theory Related Fields 140 (2008), no. 1–2, 277–317.
Web of ScienceGoogle Scholar

[8]

Z.-Q. Chen, T. Kumagai and J. Wang,
Stability of heat kernel estimates for symmetric jump processes on metric measure spaces,
preprint (2016), https://arxiv.org/abs/1604.04035.

[9]

S. D. Eidelman and A. N. Kochubei,
Cauchy problem for fractional diffusion equations,
J. Differential Equations 199 (2004), no. 2, 211–255.
CrossrefGoogle Scholar

[10]

M. Foondun and E. Nane,
Asymptotic properties of some space-time fractional stochastic equations,
Math. Z. 287 (2017), no. 1–2, 493–519.
CrossrefWeb of ScienceGoogle Scholar

[11]

A. Grigor’yan and T. Kumagai,
On the dichotomy in the heat kernel two sided estimates,
Analysis on Graphs and Its Applications,
Proc. Sympos. Pure Math. 77,
American Mathematical Society, Providence (2008), 199–210.
Google Scholar

[12]

B. M. Hambly and T. Kumagai,
Transition density estimates for diffusion processes on post critically finite self-similar fractals,
Proc. Lond. Math. Soc. (3) 78 (1999), no. 2, 431–458.
CrossrefGoogle Scholar

[13]

N. C. Jain and W. E. Pruitt,
Lower tail probability estimates for subordinators and nondecreasing random walks,
Ann. Probab. 15 (1987), no. 1, 75–101.
CrossrefGoogle Scholar

[14]

P. Kim and A. Mimica,
Green function estimates for subordinate Brownian motions: Stable and beyond,
Trans. Amer. Math. Soc. 366 (2014), no. 8, 4383–4422.
CrossrefGoogle Scholar

[15]

M. M. Meerschaert and H.-P. Scheffler,
Limit theorems for continuous-time random walks with infinite mean waiting times,
J. Appl. Probab. 41 (2004), no. 3, 623–638.
CrossrefGoogle Scholar

[16]

M. M. Meerschaert and H.-P. Scheffler,
Stochastic model for ultraslow diffusion,
Stochastic Process. Appl. 116 (2006), no. 9, 1215–1235.
CrossrefGoogle Scholar

[17]

M. M. Meerschaert and A. Sikorskii,
Stochastic Models for Fractional Calculus,
De Gruyter Stud. Math. 43,
Walter de Gruyter, Berlin, 2012.
Google Scholar

[18]

A. Mimica,
Heat kernel estimates for subordinate Brownian motions,
Proc. Lond. Math. Soc. (3) 113 (2016), no. 5, 627–648.
CrossrefGoogle Scholar

[19]

J. Nakagawa,
Personal communications.

[20]

J. Nakagawa, K. Sakamoto and M. Yamamoto,
Overview to mathematical analysis for fractional diffusion equations—new mathematical aspects motivated by industrial collaboration,
J. Math. Ind. 2A (2010), 99–108.
Google Scholar

[21]

A. I. Saichev and G. M. Zaslavsky,
Fractional kinetic equations: Solutions and applications,
Chaos 7 (1997), no. 4, 753–764.
CrossrefGoogle Scholar

[22]

R. L. Schilling, R. Song and Z. Vondraček,
Bernstein Functions. Theory and Applications, 2nd ed.,
De Gruyter Stud. Math. 37,
Walter de Gruyter & Co., Berlin, 2010.
Google Scholar

[23]

M. F. Shlesinger, J. Klafter and Y. M. Wong,
Random walks with infinite spatial and temporal moments,
J. Stat. Phys. 27 (1982), no. 3, 499–512.
CrossrefGoogle Scholar

[24]

A. Telcs,
The Art of Random Walks,
Lecture Notes in Math. 1885,
Springer, Berlin, 2006.
Google Scholar

[25]

G. M. Zaslavsky,
Fractional kinetic equation for Hamiltonian chaos,
Phys. D 76 (1994), no. 1–3, 110–122.
CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.