Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Forum Mathematicum

Managing Editor: Bruinier, Jan Hendrik

Ed. by Cohen, Frederick R. / Droste, Manfred / Darmon, Henri / Duzaar, Frank / Echterhoff, Siegfried / Gordina, Maria / Neeb, Karl-Hermann / Shahidi, Freydoon / Sogge, Christopher D. / Takayama, Shigeharu / Wienhard, Anna

IMPACT FACTOR 2018: 0.867

CiteScore 2018: 0.71

SCImago Journal Rank (SJR) 2018: 0.898
Source Normalized Impact per Paper (SNIP) 2018: 0.964

Mathematical Citation Quotient (MCQ) 2018: 0.71

See all formats and pricing
More options …
Volume 30, Issue 5


Petersson norm of cusp forms associated to real quadratic fields

Yingkun LiORCID iD: http://orcid.org/0000-0002-3974-1389
Published Online: 2018-02-02 | DOI: https://doi.org/10.1515/forum-2017-0227


In this article, we compute the Petersson norm of a family of weight one cusp forms constructed by Hecke and express it in terms of the Rademacher symbol and the regulator of real quadratic fields.

Keywords: Modular form; Petersson norm; Rademacher symbol; real quadratic field

MSC 2010: 11F11; 11F20; 11F27


  • [1]

    M. Atiyah, The logarithm of the Dedekind η-function, Math. Ann. 278 (1987), no. 1–4, 335–380. CrossrefGoogle Scholar

  • [2]

    R. E. Borcherds, Automorphic forms with singularities on Grassmannians, Invent. Math. 132 (1998), no. 3, 491–562. CrossrefGoogle Scholar

  • [3]

    P. Charollois and Y. Li, Harmonic Maass forms associated to real quadratic fields, J. Eur. Math. Soc. (JEMS), to appear. Google Scholar

  • [4]

    W. T. Gan, Y. Qiu and S. Takeda, The regularized Siegel–Weil formula (the second term identity) and the Rallis inner product formula, Invent. Math. 198 (2014), no. 3, 739–831. Web of ScienceCrossrefGoogle Scholar

  • [5]

    V. Gritsenko, 24 faces of the Borcherds modular form ϕ12, preprint (2012), https://arxiv.org/abs/1203.6503.

  • [6]

    E. Hecke, Zur Theorie der elliptischen Modulfunktionen, Math. Ann. 97 (1927), no. 1, 210–242. CrossrefGoogle Scholar

  • [7]

    S. S. Kudla, Integrals of Borcherds forms, Compos. Math. 137 (2003), no. 3, 293–349. CrossrefGoogle Scholar

  • [8]

    S. S. Kudla, Another product for a Borcherds form, Advances in the Theory of Automorphic Forms and Their L-Functions, Contemp. Math. 664, American Mathematical Society, Providence (2016), 261–294. Google Scholar

  • [9]

    Y. Li, Factorizations of average values of higher Green’s function, in preparation.

  • [10]

    C. Meyer, Die Berechnung der Klassenzahl Abelscher Körper über quadratischen Zahlkörpern, Akademie, Berlin, 1957. Google Scholar

  • [11]

    H. Rademacher, Zur Theorie der Dedekindschen Summen, Math. Z. 63 (1956), 445–463. Google Scholar

  • [12]

    S. Rallis, L-Functions and the Oscillator Representation, Lecture Notes in Math. 1245, Springer, Berlin, 1987. Google Scholar

  • [13]

    D. Zagier, Nombres de classes et fractions continues, Astérisque 24–25 (1975), 81–97. Google Scholar

About the article

Received: 2017-10-25

Revised: 2018-01-02

Published Online: 2018-02-02

Published in Print: 2018-09-01

Funding Source: Deutsche Forschungsgemeinschaft

Award identifier / Grant number: BR-2163/4-2

Funding Source: Division of Mathematical Sciences

Award identifier / Grant number: 1502713

The author is partially supported by the DFG grant BR-2163/4-2, and an NSF postdoctoral fellowship through the division of mathematical sciences.

Citation Information: Forum Mathematicum, Volume 30, Issue 5, Pages 1097–1109, ISSN (Online) 1435-5337, ISSN (Print) 0933-7741, DOI: https://doi.org/10.1515/forum-2017-0227.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in