[1]

J. G. Bak and A. Seeger,
Extensions of the Stein–Tomas theorem,
Math. Res. Lett. 18 (2011), no. 4, 767–781.
CrossrefGoogle Scholar

[2]

J. Bourgain,
Esitmations de certaines functions maximales,
C. R. Acad. Sci. Paris 310 (1985), 499–502.
Google Scholar

[3]

A. Carbery, A. Seeger, S. Wainger and J. Wright,
Classes of singular integral operators along variable lines,
J. Geom. Anal. 9 (1999), 583–605.
CrossrefGoogle Scholar

[4]

A. Erdelyi,
Higher Transcendental Functions. Vol. II,
Krieger Publishing, Florida, 1981.
Google Scholar

[5]

I. M. Gelfand and G. E. Shilov,
Generalized Function. Volume I,
Academic Press, New York, 1964.
Google Scholar

[6]

S. Gutiérrez,
Non trivial ${l}^{q}$ solutions to the Ginzburg–Landau equation,
Math. Ann. 328 (2004), 1–2, 1–25.
Google Scholar

[7]

E. Jeong, Y. Kwon and S. Lee,
Uniform sobolev inequalities for second order non-elliptic differential operators,
Adv. Math. 302 (2016), 323–350.
CrossrefWeb of ScienceGoogle Scholar

[8]

C. E. Kenig, A. Ruiz and C. D. Sogge,
Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators,
Duke Math. J. 55 (1987), 329–347.
CrossrefGoogle Scholar

[9]

R. O’Neil,
Convolution operators and $L(p,q)$ spaces,
Duke Math. J. 30 (1963), 129–142.
Google Scholar

[10]

C. D. Sogge,
Oscillatory integrals and spherical harmonics,
Duke Math. J. 53 (1986), 43–65.
CrossrefGoogle Scholar

[11]

C. D. Sogge,
Fourier Integrals in Classical Analysis,
Cambridge Tracts in Math. 105,
Cambridge University Press, Cambridge, 1993.
Google Scholar

[12]

E. M. Stein,
Singular Integrals and Differentiability Properties of Functions,
Princeton University Press, Princeton, 1970.
Google Scholar

[13]

E. M. Stein,
Beijing Lectures in Harmonic Analysis,
Ann. of Math. Stud. 112,
Princeton University Press, Princeton, 1986.
Google Scholar

[14]

E. M. Stein,
Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,
Princeton University Press, Princeton, 1993.
Google Scholar

[15]

P. Tomas,
Resriction theorems for the Fourier transform,
Proc. Symp. Pure Math. 35 (1979), 111–114.
Google Scholar

[16]

N. J. Vilenkin,
Special Functions and the Theory of Group Representations,
Transl. Math. Monogr. 22,
American Mathematical Society, Providence, 1968.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.