Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Forum Mathematicum

Managing Editor: Bruinier, Jan Hendrik

Ed. by Cohen, Frederick R. / Droste, Manfred / Darmon, Henri / Duzaar, Frank / Echterhoff, Siegfried / Gordina, Maria / Neeb, Karl-Hermann / Shahidi, Freydoon / Sogge, Christopher D. / Takayama, Shigeharu / Wienhard, Anna


IMPACT FACTOR 2018: 0.867

CiteScore 2018: 0.71

SCImago Journal Rank (SJR) 2018: 0.898
Source Normalized Impact per Paper (SNIP) 2018: 0.964

Mathematical Citation Quotient (MCQ) 2018: 0.71

Online
ISSN
1435-5337
See all formats and pricing
More options …
Volume 30, Issue 5

Issues

Space-time L 2 estimates, regularity and almost global existence for elastic waves

Kunio Hidano
  • Department of Mathematics, Faculty of Education, Mie University, 1577 Kurima-machiya-cho, Tsu, Mie 514-8507, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dongbing Zha
Published Online: 2018-06-20 | DOI: https://doi.org/10.1515/forum-2018-0050

Abstract

In this paper, we first establish a kind of weighted space-time L2 estimate, which belongs to Keel–Smith–Sogge-type estimates, for perturbed linear elastic wave equations. This estimate refines the corresponding one established by the second author [D. Zha, Space-time L2 estimates for elastic waves and applications, J. Differential Equations 263 2017, 4, 1947–1965] and is proved by combining the methods in the former paper, the first author, Wang and Yokoyama’s paper [K. Hidano, C. Wang and K. Yokoyama, On almost global existence and local well posedness for some 3-D quasi-linear wave equations, Adv. Differential Equations 17 2012, 3–4, 267–306] and some new ingredients. Then, together with some weighted Sobolev inequalities, this estimate is used to show a refined version of almost global existence of classical solutions for nonlinear elastic waves with small initial data. Compared with former almost global existence results for nonlinear elastic waves due to John [F. John, Almost global existence of elastic waves of finite amplitude arising from small initial disturbances, Comm. Pure Appl. Math. 41 1988, 5, 615–666] and Klainerman and Sideris [S. Klainerman and T. C. Sideris, On almost global existence for nonrelativistic wave equations in 3D, Comm. Pure Appl. Math. 49 1996, 307–321], the main innovation of our result is that it considerably improves the amount of regularity of initial data, i.e., the Sobolev regularity of initial data is assumed to be the smallest among all the admissible Sobolev spaces of integer order in the standard local existence theory. Finally, in the radially symmetric case, we establish the almost global existence of a low regularity solution for every small initial data in H3×H2.

Keywords: Elastic waves; Keel–Smith–Sogge-type estimates; regularity; almost global existence

MSC 2010: 35L52; 35Q74

References

  • [1]

    R. Agemi, Global existence of nonlinear elastic waves, Invent. Math. 142 (2000), no. 2, 225–250. CrossrefGoogle Scholar

  • [2]

    A. J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid Mechanics, 3rd ed., Texts Appl. Math. 4, Springer, New York, 1993. Google Scholar

  • [3]

    Z. Guo and Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations, J. Anal. Math. 124 (2014), 1–38. CrossrefGoogle Scholar

  • [4]

    K. Hidano, Small solutions to semi-linear wave equations with radial data of critical regularity, Rev. Mat. Iberoam. 25 (2009), no. 2, 693–708. Google Scholar

  • [5]

    K. Hidano, Regularity and lifespan of small solutions to systems of quasi-linear wave equations with multiple speeds. I: Almost global existence, RIMS Kôkyûroku Bessatsu B65 (2017), 37–61. Google Scholar

  • [6]

    K. Hidano, J. Jiang, S. Lee and C. Wang, Weighted fractional chain rule and nonlinear wave equations with minimal regularity, preprint (2018), https://arxiv.org/abs/1605.06748v3.

  • [7]

    K. Hidano, C. Wang and K. Yokoyama, On almost global existence and local well posedness for some 3-D quasi-linear wave equations, Adv. Differential Equations 17 (2012), no. 3–4, 267–306. Google Scholar

  • [8]

    K. Hidano, C. Wang and K. Yokoyama, Combined effects of two nonlinearities in lifespan of small solutions to semi-linear wave equations, Math. Ann. 366 (2016), no. 1–2, 667–694. CrossrefWeb of ScienceGoogle Scholar

  • [9]

    K. Hidano and K. Yokoyama, Space-time L2-estimates and life span of the Klainerman–Machedon radial solutions to some semi-linear wave equations, Differential Integral Equations 19 (2006), no. 9, 961–980. Google Scholar

  • [10]

    T. Hoshiro, On weighted L2 estimates of solutions to wave equations, J. Anal. Math. 72 (1997), 127–140. Google Scholar

  • [11]

    T. J. R. Hughes, T. Kato and J. E. Marsden, Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Ration. Mech. Anal. 63 (1976), no. 3, 273–294. Google Scholar

  • [12]

    J.-C. Jiang, C. Wang and X. Yu, Generalized and weighted Strichartz estimates, Commun. Pure Appl. Anal. 11 (2012), no. 5, 1723–1752. CrossrefWeb of ScienceGoogle Scholar

  • [13]

    S. Jiang and R. Racke, Evolution Equations in Thermoelasticity, Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math. 112, Chapman & Hall/CRC, Boca Raton, 2000. Google Scholar

  • [14]

    F. John, Formation of singularities in elastic waves, Trends and Applications of Pure Mathematics to Mechanics (Palaiseau 1983), Lecture Notes in Phys. 195, Springer, Berlin (1984), 194–210. Google Scholar

  • [15]

    F. John, Almost global existence of elastic waves of finite amplitude arising from small initial disturbances, Comm. Pure Appl. Math. 41 (1988), no. 5, 615–666. CrossrefGoogle Scholar

  • [16]

    M. Keel, H. F. Smith and C. D. Sogge, Almost global existence for some semilinear wave equations, J. Anal. Math. 87 (2002), 265–279. CrossrefGoogle Scholar

  • [17]

    S. Klainerman, On the work and legacy of Fritz John, 1934–1991, Comm. Pure Appl. Math. 51 (1998), 991–1017. CrossrefGoogle Scholar

  • [18]

    S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993), no. 9, 1221–1268. CrossrefGoogle Scholar

  • [19]

    S. Klainerman and T. C. Sideris, On almost global existence for nonrelativistic wave equations in 3D, Comm. Pure Appl. Math. 49 (1996), 307–321. CrossrefGoogle Scholar

  • [20]

    H. Kubo, Lower bounds for the lifespan of solutions to nonlinear wave equations in elasticity, Evolution Equations of Hyperbolic and Schrödinger Type, Progr. Math. 301, Birkhäuser, Basel (2012), 187–212. Google Scholar

  • [21]

    H. Lindblad, Counterexamples to local existence for semi-linear wave equations, Amer. J. Math. 118 (1996), no. 1, 1–16. CrossrefGoogle Scholar

  • [22]

    H. Lindblad, Counterexamples to local existence for quasilinear wave equations, Math. Res. Lett. 5 (1998), no. 5, 605–622. CrossrefGoogle Scholar

  • [23]

    H. Lindblad and C. D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (1995), no. 2, 357–426. CrossrefGoogle Scholar

  • [24]

    M. Y. Liu and C. B. Wang, Global existence for some 4-D quasilinear wave equations with low regularity, Acta Math. Sin. (Engl. Ser.) 34 (2018), no. 4, 629–640. CrossrefGoogle Scholar

  • [25]

    S. Machihara, M. Nakamura, K. Nakanishi and T. Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation, J. Funct. Anal. 219 (2005), no. 1, 1–20. CrossrefGoogle Scholar

  • [26]

    J. Metcalfe, Elastic waves in exterior domains. I. Almost global existence, Int. Math. Res. Not. IMRN 2006 (2006), Article ID 69826. Google Scholar

  • [27]

    J. Metcalfe and C. D. Sogge, Long-time existence of quasilinear wave equations exterior to star-shaped obstacles via energy methods, SIAM J. Math. Anal. 38 (2006), no. 1, 188–209. CrossrefGoogle Scholar

  • [28]

    J. Metcalfe and C. D. Sogge, Global existence of null-form wave equations in exterior domains, Math. Z. 256 (2007), no. 3, 521–549. Web of ScienceCrossrefGoogle Scholar

  • [29]

    J. Metcalfe and B. Thomases, Elastic waves in exterior domains. II. Global existence with a null structure, Int. Math. Res. Not. IMRN 2007 (2007), no. 10, Article ID rnm034. Google Scholar

  • [30]

    E. Y. Ovcharov, Radial Strichartz estimates with application to the 2-D Dirac–Klein–Gordon system, Comm. Partial Differential Equations 37 (2012), no. 10, 1754–1788. CrossrefGoogle Scholar

  • [31]

    G. Ponce and T. C. Sideris, Local regularity of nonlinear wave equations in three space dimensions, Comm. Partial Differential Equations 18 (1993), no. 1–2, 169–177. CrossrefGoogle Scholar

  • [32]

    T. C. Sideris, The null condition and global existence of nonlinear elastic waves, Invent. Math. 123 (1996), no. 2, 323–342. CrossrefGoogle Scholar

  • [33]

    T. C. Sideris, Nonresonance and global existence of prestressed nonlinear elastic waves, Ann. of Math. (2) 151 (2000), no. 2, 849–874. CrossrefGoogle Scholar

  • [34]

    T. C. Sideris and S.-Y. Tu, Global existence for systems of nonlinear wave equations in 3D with multiple speeds, SIAM J. Math. Anal. 33 (2001), no. 2, 477–488. CrossrefGoogle Scholar

  • [35]

    H. F. Smith and D. Tataru, Sharp local well-posedness results for the nonlinear wave equation, Ann. of Math. (2) 162 (2005), no. 1, 291–366. CrossrefGoogle Scholar

  • [36]

    C. D. Sogge, Lectures on Non-Linear Wave Equations, 2nd ed., International Press, Boston, 2008. Google Scholar

  • [37]

    E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, And Oscillatory Integrals, Princeton Math. Ser. 43, Princeton University Press, Princeton, 1993. Google Scholar

  • [38]

    J. Sterbenz, Angular regularity and Strichartz estimates for the wave equation, Int. Math. Res. Not. IMRN 2005 (2005), no. 4, 187–231. CrossrefGoogle Scholar

  • [39]

    Q. Wang, A geometric approach for sharp local well-posedness of quasilinear wave equations, Ann. PDE 3 (2017), no. 1, Article ID 12. Google Scholar

  • [40]

    D. Zha, Space-time L2 estimates for elastic waves and applications, J. Differential Equations 263 (2017), no. 4, 1947–1965. Web of ScienceGoogle Scholar

  • [41]

    Y. Zhou and Z. Lei, Global low regularity solutions of quasi-linear wave equations, Adv. Differential Equations 13 (2008), no. 1–2, 55–104. Google Scholar

About the article


Received: 2018-02-21

Revised: 2018-05-21

Published Online: 2018-06-20

Published in Print: 2018-09-01


Funding Source: Japan Society for the Promotion of Science

Award identifier / Grant number: JP15K04955

Award identifier / Grant number: JP18K03365

The first author was supported in part by JSPS KAKENHI Grants JP15K04955 and JP18K03365. The second author was supported by the Shanghai Sailing Program (no. 17YF1400700) and Fundamental Research Funds for the Central Universities (no. 17D110913).


Citation Information: Forum Mathematicum, Volume 30, Issue 5, Pages 1291–1307, ISSN (Online) 1435-5337, ISSN (Print) 0933-7741, DOI: https://doi.org/10.1515/forum-2018-0050.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Dongbing Zha
Journal of Differential Equations, 2019

Comments (0)

Please log in or register to comment.
Log in